Pharmacotherapy in ACLS

Scott A. Chapman, Pharm.D.
North Memorial Medical Center
UM College of Pharmacy

Pharmacotherapy in ACLS

• Lecture Objectives
 1. Know the ACLS algorithms for VF/pulseless VT, bradycardia, and tachycardia with a pulse.
 2. Given a patient scenario, be able to chose the appropriate medication(s) based on the algorithm recommendation.

Readings

Required
• Pharmacotherapy Text Chapter 12: Page 171-183.

Suggested
• ACC/AHA 2005 Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
 – Part 7.2: Management of Cardiac Arrest (pp:IV-58 to IV-66).
 – Part 7.3: Management of Symptomatic Bradycardia and Tachycardia (pp:IV-67 to IV-77).

Clinical Presentation

• Symptoms
 – Anxiety, change in MS, unconscious
 – Cold, clammy extremities
 – Dyspnea, SOB, no respiration
 – Chest pain
 – Diaphoresis
 – Nausea/vomiting

• Signs
 – Hypotension
 – Tachycardia, bradycardia, irregular, no pulse
 – Cyanosis
 – Hypothermia
 – Distant or absent heart and lung sounds

PULSELESS ARREST

Ventricular Tachycardia (pulseless)
Ventricular Fibrillation
Asystole
Pulseless Electrical Activity (PEA)
EPINEPHRINE

- Alpha and beta receptor agonist
 - Increases myocardial and cerebral perfusion pressure during CPR
 - Increases systemic arteriolar vasoconstriction
 - Increases aortic diastolic pressure
- Increases Heart Rate
- Increases Force of Contraction
- Increases Myocardial Oxygen Demand

EPINEPHRINE

- Bolus dose
 - 1mg IV bolus every 3-5 minutes
 - 10ml of 1:10,000 solution
 - Follow each dose with 20ml IV flush
- High dose epinephrine (up to 0.2mg/kg)
 - Literature does not support efficacy
 - May be needed if beta-blocker or CCB overdose

VASOPRESSIN

- Coronary and renal vasoconstriction
- Increased systemic vascular resistance
 - Increases myocardial and cerebral blood flow during CPR
 - Increases aortic diastolic pressure
VASOPRESSIN

Cardiac arrest patients randomized to VP 40 units IV or EPI 1mg IV.
EPI administered q3-5 min if no return of pulse.

<table>
<thead>
<tr>
<th></th>
<th>VP(n=104)</th>
<th>EPI(n=96)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional EPI</td>
<td>87%</td>
<td>81%</td>
<td></td>
</tr>
<tr>
<td>Survival 1hr post arrest</td>
<td>39%</td>
<td>35%</td>
<td>0.66</td>
</tr>
<tr>
<td>H discharge</td>
<td>12%</td>
<td>14%</td>
<td>0.67</td>
</tr>
<tr>
<td>Tachyarrhythmias</td>
<td>10%</td>
<td>8%</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Out of hospital arrest randomized to VP 40 units IV x 2 or EPI 1mg IV x 2.
Additional EPI as needed.

<table>
<thead>
<tr>
<th></th>
<th>VP (n=589)</th>
<th>EPI (597)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>H admission*</td>
<td>36.3%</td>
<td>31.2%</td>
<td>0.06</td>
</tr>
<tr>
<td>H discharge*</td>
<td>9.9%</td>
<td>9.9%</td>
<td>0.99</td>
</tr>
<tr>
<td>Additional EPI*</td>
<td>63.3%</td>
<td>60.1%</td>
<td></td>
</tr>
<tr>
<td>H admission*</td>
<td>25.7%</td>
<td>16.4%</td>
<td>0.002</td>
</tr>
<tr>
<td>H discharge*</td>
<td>6.2%</td>
<td>1.7%</td>
<td>0.002</td>
</tr>
</tbody>
</table>

*Subset with asystole SS more H admission and discharge with VP vs. EPI, but no improvement in neurologically intact survival.

VASOPRESSIN

• 40 units IV push x 1 dose as a substitute for the first or second EPI dose.

• If no response after 5-10 minutes, return to epinephrine dosing.

Vasopressin vs. Epinephrine

• Metabolic acidosis may blunt epinephrine effects, but not vasopressin.

• Beta receptor stimulation by epinephrine can increase myocardial oxygen demand. Vasopressin does not stimulate beta receptors.

VT/VF

Indications

– Pulseless VT/VF

– PMVT and wide complex VT

– Stable VT if cardioversion fails

Amiodarone

• Indications

– Pulseless VT/VF

– PMVT and wide complex VT

– Stable VT if cardioversion fails
Amiodarone vs. Lidocaine
Dorian et al. NEJM 2002; 346:884-90
• Double blind-controlled trial with block randomization
Out of hospital arrest.
Resistant to 3 shocks, 1 dose EPI, 4th shock, or recurrent VF after defibrillation.
• Medications
Amiodarone 5mg/kg bolus, MR with 2.5mg/kg.
Lidocaine 1.5mg/kg bolus, MR with 1.5 mg/kg.

Amiodarone vs. Lidocaine
Dorian et al. NEJM 2002; 346:884-90
• Survival to discharge
 | Amiodarone | Lidocaine |
 | 9/41 (21.9%) | 5/20 (25%) p=0.34 |
• Treatment for bradycardia or dysrhythmias
Amiodarone	Lidocaine
Atropine 24%	23%
Dopamine 7%	4%
Open label lidocaine 6%	6%

Amiodarone vs. Placebo
Kudenchuk et al. NEJM 1999;341:871-8
• Out of Hospital Cardiac arrest-shock
• Shock refractory VT/VF
• Amiodarone 300mg in 20ml D5W or PL

Amiodarone
• Cardiac Arrest
 300mg IV push, repeat in 3-5 mins. at half dose (150mg)
• Infusion (Wide Complex Tachycardia)
 – Rapid: 150 mg IV over 10mins, repeat as needed
 – Slow: 360 mg IV over 6 hrs (1mg/min)
 – Maintenance: 540 mg IV over 18 hrs (0.5mg/min)
• Maximum dose 2.2 gm in 24 hours
LIDOCAINE

- Significant ventricular ectopy.
- VT/VF that persists after defibrillation/epinephrine or vasopressin.
- Ventricular tachycardia with a pulse.
- Wide-complex tachycardia of uncertain origin.
- Post-MI ventricular arrhythmias.

VF/Pulseless VT
- 1-1.5 mg/kg initial
- Repeat dose at 0.5-0.75 mg/kg in 5-10 minutes
- Maximum total dose = 3 mg/kg
- Only bolus therapy is used in cardiac arrest

Continuous infusion
- Mix 1 gram of lidocaine in 250 ml or 2 grams in 500 ml
- Infusion rate 1-4 mg/min
 - After 1 mg/kg bolus, drip 2 mg/min
 - After 1 1/2 - 2 mg/kg, drip 3 mg/min
 - After 2 1/2 - 3 mg/kg, drip 4 mg/min
- Because Lidocaine is metabolized in the liver, the infusion rate should be reduced by 50% in:
 - Hepatic dysfunction
 - >70 years of age
 - Decreased cardiac output
 - Shock
 - Acute MI
 - Congestive Heart Failure

In patients with a pulse, a second IV bolus is recommended 10 min. after the initial lidocaine bolus to prevent subtherapeutic lidocaine levels.

Pharmacokinetics
LIDOCAINE

- Dizziness
- Drowsiness
- Mild Agitation
- Slurred Speech
- Hearing Impairment
- Disorientation & Confusion
- Muscle Twitching/Seizures
- Respiratory Arrest

Precautions

- Lidocaine may be LETHAL in a bradycardia with a ventricular escape rhythm.
 - Second degree AV Block Type II
 - Third degree AV Block with a wide QRS
 - Idioventricular rhythm

MAGNESIUM SULFATE

- Torsades de Pointes
- Cardiac arrest with known or suspected hypomagnesemia
- Refractory VF

Cardiac Arrest:
- 1-2 grams (2-4ml of 50% solution) diluted in 10ml D5W IV push
- Torsades with a pulse:
 - Loading dose of 1-2 grams mixed in 50-100ml of D5W and administered over 5-60 minutes
 - Followed with 0.5 - 1.0 g/h up to 24 hours

Overdose

- Signs and symptoms of magnesium overdose include:
 - Hypotension
 - Flushing, sweating
 - Bradycardia, AV block
 - Decreased respiration rate
 - Drowsiness, decreasing level of consciousness
 - Diminished reflexes or muscle weakness, flaccid paralysis

- Physiological antagonism
 - Electrical opposition at site of action
- Elemental calcium 100-200 mg IV push or infusion over 10 min
 - Calcium gluconate 10% -- 9 mg/mL (0.45 mEq/mL)
 - Calcium chloride 10% -- 27 mg/mL (1.36 mg/mL)
Asystole

Pulseless Electrical Activity

ATROPINE

- Blocks vagally mediated parasympathetic (cholinergic) actions on the heart
 - Increases rate of sinus node discharge
 - Improves AV conduction
 - Increases blood pressure
 - May restore cardiac rhythm in asystole and bradycardic pulseless electrical activity (PEA)

ATROPINE

- Indications in ACLS*
 - Asystole
 - Pulseless Electrical Activity (PEA)
 - If PEA rate is slow

*No randomized controlled trials to support

ATROPINE

- Asystole, Bradycardic PEA:
 - 1.0mg rapid IV bolus every 3-5 minutes
 - Maximum 0.04mg/kg (3mg)
 - 3mg given IV is a fully vagolytic dose in most patients
Atropine

- Doses of less than 0.5mg may further slow heart rate
- Excessive doses may result in tachycardia
- May exacerbate ischemia or induce VT or VF
 - Use with caution in acute MI

Summary of Pulseless Arrest

- **BLS, CPR, Oxygen, Monitor/defibrillator**
- **Shockable rhythm-VF/VT-YES**
 - Shock-CPR-shock-CPR
 - EPI 1mg q3-5 min or VP 40 units x 1, then EPI
 - CPR-Shock-CPR
 - Consider Antiarrhythmics
 - Amiodarone or Lidocaine
 - Magnesium for Torsades de pointes

Summary of Pulseless Arrest

- **BLS, CPR, Oxygen, Monitor/defibrillator**
- **Shockable rhythm-Asystole/PEA-NO**
 - CPR
 - EPI 1mg q3-5 min or VP 40 units x 1, then EPI
 - Atropine 1mg IV q5 min x 3
 - Shockable rhythm-YES-VF/VT algorithm
 - NO-continue with EPI and Atropine as above.

Bradyarrhythmia
ATROPINE

- Symptomatic Bradycardia:
 - 0.5-1.0 mg rapid IV bolus every 3-5 minutes
 - Maximum 0.03-0.04mg/kg (2-3mg)
 - If unresponsive to atropine, consider
 - Epinephrine
 - Dopamine

EPINEPHRINE

Bradycardia Infusion

- Mix 1mg of 1:1000 in 500ml bag of normal saline
- Start at 1mcg/min and titrate to desired response (2-10mcg/min)

DOPAMINE

- Dopamine 400mg/D5W250ml
 - Start at 2 mcg/kg/min, titrate to 10 mcg/kg/min
 - Predominant beta-adrenergic stimulating properties
 - Increased myocardial contractility
 - Increase in heart rate
 - Increased cardiac output

LIDOCAINE

Precautions

- If the heart rate is less than 60 bpm, do not treat ventricular ectopy! Treat the Bradycardia First.
Bradycardia

Summary

- ABC
- Adequate perfusion?
 - Increase HR as needed.
- Reminders.

Tachycardia with Pulse

- Narrow Complex (QRS < 0.12 sec)
 - Sinus tachycardia
 - Atrial fibrillation/flutter
 - AV node reentry
 - Accessory pathway-mediated tachycardia
 - Atrial tachycardia (ectopic or reentry)
 - Multifocal atrial tachycardia
 - Junctional tachycardia
- Wide Complex (QRS ≥ 0.12 sec)
 - Ventricular tachycardia
 - SVT with Aberrancy
 - Pre-excited tachycardia
ADENOSINE
• Decreases SA and AV node activity.
• Can interrupt reentrant pathways through the AV node.
• Direct effect on supraventricular tissue.
• Will not convert AF, A flutter, ventricular arrhythmias
 – But may produce AV or retrograde block that may clarify the diagnosis.

ADENOSINE
• Narrow QRS Tachycardia (PSVT)
• Effective in terminating those due to reentry involving the AV or Sinus node

ADENOSINE
• 6mg rapid IV bolus over 1-3 seconds.
 – Follow with 20ml saline flush.
 – Elevate extremity.
• If no response in 1-2 minutes, administer 12mg over 1-3 seconds.
• May repeat 12mg dose once in 1-2 minutes.

ADENOSINE
• Short half-life
 – Each dose should be administered rapidly over 1-3 seconds
• Follow with Saline flush 20 ml
• Repeat dose may be administered in 1-2 minutes

ADENOSINE
• Side effects common but transient and usually resolve within 1-2 minutes:
 – Flushing Lightheadedness
 – Nausea Asystole/bradycardia
 – Headache Ventricular ectopy
 – Dyspnea
 – Hypotension
 – Chest pressure

ADENOSINE
• Methylxanthines (caffeine, theophylline)
 – Block adenosine receptor
 – Higher doses of adenosine needed
• Carbamazepine (Tegretol)
 – Higher degrees of heart block may occur
• Dipyridamole
 – Blocks adenosine uptake-potentiates effect
Calcium Channel Blockers

- SVT recurrence after conversion with adenosine.
- SVT conversion fails with adenosine.

Beta-Adrenergic Blockers

Metoprolol (β1)
- 5mg slow IV (over 2-5 minutes) repeat every 5 minutes as tolerated to 15mg total.
- Follow with 50 mg twice daily x 2, then 100mg twice daily.

Propranolol (β1 AND β2)
- 0.1mg/kg total dose slow IV push (1mg/min).
- Divided into three doses administered at 2-3 minute intervals.
- Repeat after 2 minutes if necessary.

Calcium Channel Blockers

- Verapamil
 - 2.5 to 5.0 mg slow IV bolus over 2 min (3min in elderly)
 - May repeat with 5-10mg in 15-30min (max. 20mg)
 - If no response and the blood pressure remains normal or elevated

- Diltiazem
 - 0.25mg/kg (20mg) IV over 2 minutes
 - If needed, follow in 15 minutes with 0.35mg/kg (25mg) IV over 2 min
 - Maintenance infusion of 5-15 mg/hr
 - Titrate to heart rate watch blood pressure

Beta-Adrenergic Blockers

Atenolol (β1)
- 5mg slowly IV over 5 minutes
- After 10 minutes may repeat 5mg dose IV over 5 minutes

Esmolol (t½ 2-9 minutes) (β1)
- 0.5mg/kg slow IV (over 1min)
- Infusion at 0.05mg/kg/min
- Maximum 0.3mg/kg/min
- May repeat loading dose before infusion rate increases.

Wolff-Parkinson-White Syndrome

- AV node blocking drugs can cause paradoxical increase ventricular response
- Amiodarone
- Avoid
 - calcium channel blockers
 - beta-blockers
 - digoxin
 - adenosine
Tachycardia with Pulse

Summary

- ABC, EKG, cause
- Is patient stable
 - No-synchronized cardioversion
 - Yes
 - Narrow or wide QRS?
 - Regular or irregular
 - Pharmacotherapy based on results

When to administer meds:

- Meds should be administered during CPR

CPR-RHYTHM CHECK-CPR (WHILE MEDS ADMINISTERED AND DEFIBRILLATOR CHARGED)-SHOCK

- Designed to minimize interruption in chest compressions.

Tracheal Drug Administration

- Several medications may be administered via the tracheal tube,
 - Epinephrine 2-2.5 times IV dose
 - Atropine 2-2.5 times IV dose
 - Lidocaine 2-2.5 times IV dose
 - Vasopressin SAME as IV dose
- Catheter tip beyond ETT, stop CPR, spray solution quickly down ETT, several quick insufflations, resume CPR.
ACLS Pulseless Arrest Algorithm.

Page 15
Figure 1. Bradycardia Algorithm.
Figure 2. ACLS Tachycardia Algorithm.