Clinical Use of Antimicrobial Pharmacodynamic Programs

John C. Rotschafer, Pharm. D.
Professor
College of Pharmacy
University of Minnesota

Introduction
Prescribers seem to operate with two preconceived premises:
- If a little antibiotic is good, a whole lot of antibiotic is better
 • Concentration dependent vs independent
- If one antibiotic is good, two or three antibiotics have to be better
 • Synergy vs. antagonism vs. indifference

“We know everything about antibiotics except how much to give”

Attributed to Maxwell Findland, M.D.

Pharmacokinetics vs Pharmacodynamics

Pharmacokinetics - mathematically describes the relationship of antibiotic concentration vs time (half-life, distribution volume, AUC, etc.)

Pharmacodynamics - describes the relationship of antibiotic concentration vs pharmacologic effect or bacterial death (PD Outcome Parameters)

In-vitro ↔ Animal ↔ Human

Potential Applications of Pharmacodynamics

- Tool in the antibiotic development process
 ■ Already part of the FDA Points to Consider Document
 ■ Part of Marketing Strategy in the Detailing and Counter Detailing of Antibiotics
 ■ Parameter for antibiotic formulary selection
 – Hospitals or Health Plans
 ■ Patient specific management tool
 – Dose, route, interval and/or method of administration
 ■ Clinical gauge for the development of bacterial resistance
 – Direct vs Collateral Damage

E-Max Model

Concentration Range with Commercial Dosage Forms

Bacterial Killing

Antibiotic Concentration

Effect
Strategies to Control Escalating Pharmaceutical Cost at Regions Hospital

Concentration Dependent or Independent Bacterial Killing

Concentration Dependent vs Concentration Independent

- Can we use one term to describe antibiotic performance against all bacteria:
 - Gram positive vs Gram negative vs Anaerobes vs Atypicals:
 - Different or no cell wall
 - Altered influx and/or efflux
 - Potentially same antibiotic target but likely different binding efficiency
 - Can same pharmacodynamic parameter and range of values be used for all pathogens and all infections

Dosing Strategies for Concentration Dependent Killer

- Optimize AUC / MIC or Cp-max / MIC ratio
- Use concentration dependent killer first to quickly reduce bacterial burden
- Antibiotic combinations
 - Use products of different chemical class
 - Use antibiotics with different mechanisms of action
 - Probably not wise to use two concentration dependent products together

Dosing Strategies for Concentration Independent Antimicrobial Agents

- Select agent with long half-life, low protein binding, and large Vd
- More frequent dosage administration
- Continuous infusion of antibiotic
- Repository antibiotic dosage forms
- Block excretion (probenecid)
- Select product with active metabolite
- Select class product with lowest MIC

Pharmacodynamic Outcome Parameters

- AUC / MIC = 100 / 0.5 = 200
- Cp-max / MIC = 10 / 0.5 = 20
- T > MIC ~ 24hrs
- AUC = 100 mg h / L

Rate & Extent of bacterial killing a function of antibiotic concentration

Rate & extent of bacterial kill essentially unchanged regardless of antibiotic concentration
The AUC/MIC or AUIC Concept

- Retrospective evaluation of 74 patients with LRTI treated with intravenous Ciprofloxacin
- 82% of pathogens Gram negative
- 15% S. aureus (50% received concomitant rifampin)
- AUC/MIC ratio ≥ 125 minimal breakpoint for clinical and microbiological cure
- AUC/MIC ratio of 250–500 better in terms of clinical and microbiologic response

- Prospective evaluation of 313 adult patients with UTIs, respiratory infections, and skin & soft tissue infections (134 with identified org)
- 58% of isolates accounted for by 5 species
- 16% S. pneumoniae & 11% S. aureus
- Levofloxacin (500 mg PO & IV)
- Cp-max/MIC ratio ≥ 10:1 associated with successful clinical & microbiological outcome
- Cp-max/MIC & AUC/MIC highly correlated (r=0.942)

Proposed Pharmacodynamic Parameters

Parameter* Antimicrobial
T>MIC β-lactams, macrolides, aztreonam, carbapenems & clindamycin
AUC/MIC Aminoglycosides, fluoroquinolones, azithromycin, tetracyclines, vancomycin & quinupristin/dalfopristin
Cp-max/MIC Aminoglycosides & fluoroquinolones

* Covariance of parameters with antibiotic dose

In-vitro Modeling
- Provides a reproducible environment to quickly & inexpensively answer therapeutic questions
- Can manipulate both Cp-max and drug clearance simultaneously
- Can address situations where clinical data is likely to be extremely limited
 - PCN-R S. pneumoniae
 - Anthrax
 - Generic antibiotics
- Can test a wide range of parameter values without concern for therapeutic failure or ADR
- Means to address parameter covariance
- Can pursue academic questions that cannot be pursued in humans

In-Vitro Model Variables

- Validation of new models
- pH
- Aerobic / Anaerobic
- Protein Binding
- Exponential vs Stationary Growth Phase
- Variability in Bacterial Growth that is Media Dependent
- Antibiotic Stability
- Antibiotic Carryover
- Inoculum Size (Different size used for MIC determination & Experiments)
- Number and Duration of Experiments
- Duplicate vs Triplicate Experiments
Strategies to Control Escalating Pharmaceutical Cost at Regions Hospital

In-Vitro Modeling Variables
- Intensity of Sampling
- How many pathogens required representing a species
- Defining Terms
- Lower Counting Limit
- Handling Data that Falls Below Counting Limit
- Appropriate Endpoints
 - 99% vs 99.9% vs 99.99%
 - Slope analysis
 - AUKC
- Evaluation or Accounting for Bacterial Regrowth

Pharmacodynamic Outcome Parameters
- Optimal Range of Data for Identifying Outcome Parameter
- Fitting Data to Mathematical Models
- Handling Data after >3 Log Kill
- Appropriate Use of Descriptive and Inferential Statistics for Small Data Sets

Animal Model Variables
- Model Validation
- How well does “Infection Model” emulate Human Infection (Acute vs. Chronic)?
- Species Variability Animal, Age, Genetics
- Immune Status
- Inoculum size
- Bacterial Isolate Used (MIC / Virulence)
- Drug Dose and Frequency (Simulation of Human PK)

Adequate Range of Dose or PK Parameters
- Manipulation of Drug Clearance
- Time Interval Between Creating Infection & Treatment
- Method of Processing Samples
- Route of Administration
- Dosage Form or Formulation
- Duration of Treatment
- Duration of Follow-up
- Endpoint

Which Pharmacodynamic Parameter is Most Important?
- Cp-max / MIC ratio vs AUC / MIC ratio?
- Can differences & distinctions in pharmacodynamic parameters really be addressed in human studies?
 - All patients are similarly dosed
 - Variety of infections being treated
 - Diversity of pathogens exist

AUC vs Cpmax

Use different Cpmax & t1/2 to produce same AUC but Peak/MIC different

Curves different or the same?
Strategies to Control Escalating Pharmaceutical Cost at Regions Hospital

Fluoroquinolone Pharmacodynamic Outcome Parameters

- **Gram Negatives**
 - AUC/MIC ratio ≥ 125
- **S. pneumoniae**
 - AUC/MIC ratio ≥ 25-50
- **Anaerobes**
 - AUC/MIC ratio ≥ 50

Wright D. JAC 46:669-683, 2000

Fluoroquinolone Serum AUC / MIC Ratios

<table>
<thead>
<tr>
<th>AUC-24 (mg•hr/L)</th>
<th>MIC (mg/L)</th>
<th>2.0</th>
<th>1.0</th>
<th>0.5</th>
<th>0.25</th>
<th>0.125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>48</td>
<td>24</td>
<td>48</td>
<td>96</td>
<td>192</td>
<td>384</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>48</td>
<td>24</td>
<td>48</td>
<td>96</td>
<td>192</td>
<td>384</td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>51</td>
<td>25</td>
<td>51</td>
<td>102</td>
<td>204</td>
<td>408</td>
</tr>
<tr>
<td>Gemifloxacin</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>+ Gemifloxacin AUC / MIC ratio for S. pneumoniae = 8 / 0.015 = 533</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- AUC likely higher in real patients vs human volunteers
- Correct values for extent of protein binding

Commercial Pharmacodynamic Software

- AUIC program developed by Drs Aldelman & Schentag - Clinical Pharmacokinetics Laboratory, Millard Fillmore Hospital, Buffalo, NY
- Attempts to optimize antibiotic therapy using population pharmacokinetics and generates a AUIC for specific situation
- Not rigorously tested

Limitations of PK/PD Programs

- PK models derived from a variety of patient populations or healthy volunteers
- Question of how well your patient is represented by the pharmacokinetic data pool?
- MIC data not available in some institutions
- (S)ensitive, (I)ntermediate, or (R)esistant
- Summation of AUC/MIC parameters treats the impact of concentration & time dependent antibiotics the same
- Toxicity of agent not factored into program
- Software program could recommend a potentially toxic dose
- Claims of reduced bacterial resistance not validated

Inability of a Commercially Available Antibiotic Utilization Information and Consultation Program to Predict Outcome or Time to Event in GNNP

- No correlation between measured & estimated AUC for aminoglycosides
- Estimated sum of beta-lactam & aminoglycoside AUIC not predictive of outcome or time to event in 64 cases of GNNP
- Use of pharmacodynamic parameters such as AUC/MIC for aminoglycosides & T>MIC for beta-lactams not predictive of outcome or time to event

Strategies to Control Escalating Pharmaceutical Cost at Regions Hospital

Fluoroquinolone Pharmacodynamic Outcome Parameters

- **Gram Negatives**
 - AUC/MIC ratio ≥ 125
- **S. pneumoniae**
 - AUC/MIC ratio ≥ 25-50
- **Anaerobes**
 - AUC/MIC ratio ≥ 50

Wright D. JAC 46:669-683, 2000
Sample Case Report

- 53 year old male involved in MVA with multiple head & abdominal injuries. Admitted to SICU placed on respirator 8 days ago.
- Patient spikes temperature to 103.5 F
- WBC's increase to 21,000/mm3
- CXR demonstrates new infiltrate
- Following culture results are returned from BAL specimen obtained ~48 hours ago

Antibiotic Resistant

\[P. \text{ aeruginosa} \]

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>(P. \text{ aerug} \ #1)</th>
<th>(P. \text{ aerug} \ #2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>>4</td>
<td>>4</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>>32</td>
<td>32</td>
</tr>
<tr>
<td>Imipenem</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Zosyn</td>
<td>>128/4</td>
<td>>128/4</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>>16</td>
<td>>16</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>16</td>
<td>>16</td>
</tr>
<tr>
<td>Colistin</td>
<td>0.125</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Obtained: University of Kentucky, R. Rapp, Pharm. D.

Role of Pharmacodynamics in Developing Antibiotic Dosing Strategies

- Can we reinvent Colistin?
 - Identify Right Dose & Interval
 - Maximize antibiotic efficacy
 - Minimize antibiotic induced toxicity

Polymyxins

- Class of novel basic polypeptide antibiotics (A, B, C, D, & E)
 - Identified in 1947 by both British & American Scientists
 - UK: B. aerosporus– aerosporin (polymyxin A)
 - USA: B. polymyxa – polymyxin (polymyxin D)
 - Work by damaging the cell membrane
 - Disrupts cell permeability
 - Exclusively a Gram negative antibiotic
 - Exceptions: Proteus spp. & Neisseria spp.
 - Pharmacokinetics poorly studied
 - Data currently available uses older technology

Polymyxin E Adverse Events

- Pain at injection site
- Nephrotoxicity (20-25%)
 - Contributing factor to polymyxin demise
 - With controlled therapy can safely be given
- Neurologic ADR’s (7-29%)
 - Paresthesia
 - Dizziness
- NMJ Blocking
 - Pareses associated with levels > 100 mg/L
- Causes release of histamine & SHT
 - Hypersensitivity (polymyxin B > E)

Garrod, L. & O’Grady, F.: Antibiotic & Chemotherapy 1971
Colistin Parenteral Dosing

- Usually maximum of 5 mg/Kg/day
 - Daily dose divided & given BID or TID
 - Doses of 6-8 mg/Kg/day for more serious infections
- Usually maximum of 2.5 mg/Kg/dose
 - Do not use colistin sulfate parenterally
 - Observation that ADR’s dose related
 - Given IV over 20-30 minutes
- Virtually no pharmacokinetic/pharmacodynamic data or dosing

In vitro Pharmacodynamic Model

Simulated Colistin Parameters

<table>
<thead>
<tr>
<th>Cmax (mg/L)</th>
<th>T ½ (Hrs)</th>
<th>AUC</th>
<th>AUC/ MIC</th>
<th>Cmax/ MIC</th>
<th>T>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mg/L IM use</td>
<td>3 hours</td>
<td>26 mg hr/L</td>
<td>208</td>
<td>48</td>
<td>70%</td>
</tr>
<tr>
<td>18 mg/L IV use</td>
<td>3 hours</td>
<td>78 mg hr/L</td>
<td>624</td>
<td>144</td>
<td>90%</td>
</tr>
</tbody>
</table>

High vs Low Dose X 24Hrs

High & Low Dose BID vs High Dose QD
Strategies to Control Escalating Pharmaceutical Cost at Regions Hospital

Colistin Conclusions
- Evidence colistin is a concentration dependent killer of P. aeruginosa
- QD dosing strategy seems to offer comparable performance to BID
- Concomitant use of ceftazidime appeared synergistic while ciprofloxacin appeared indifferent
- QD strategy could reduce colistin ADR's
- Because colistin is a generic drug clinical trials to validate findings unlikely

Pharmacodynamics:
- Most of the pharmacodynamic data available is:
 - In-vitro or animal data
 - Encompass a limited number of pathogens
 - Primarily available for fluoroquinolones
 - Use blood concentration as a surrogate marker
- There are no Journal standards for publishing pharmacodynamic data
 - No accepted method for validating new models
 - No standard for validating in-vitro or animal findings in humans

Summary
Pharmacodynamics will continue to advance as a science and will become more sophisticated:
- PD parameters will be validated for different antibiotics, pathogens & infections in patients
- Bedside application
- Part of formulary selection
- Over time, we will see if objective antibiotic dosing using will prevent, limit, or delay the emergence of resistant pathogens
Acknowledgements:

- Laurie Baeker-Hovde, BS, MT (ASCP)
- Khalid Ibrahim, Pharm. D.
- Brent Gunderson, Pharm. D.
- Tim Fromm, Pharm. D. Candidate
- Gigi Brown, Pharm. D.
- Marnie Peterson, Pharm. D., BCPS
- David H. Wright, Pharm.D.
- Janet K. Raddatz, Pharm. D.
- Anh Thu Hoang, Pharm. D.