Overview

- Focus will be on biologic agents
- Discuss available prophylaxis & therapeutic measures
- Look at our state of preparedness on a local, state, & national level
- Consider measures for your own personal safety & that of your family

Terrorism (Code of Federal Regulations)
- The unlawful use of force and violence against persons or property to intimidate or coerce a government, the civilian population, or any segment thereof, in furtherance of political or social objectives

Bioterrorism
- Use of biological agents to intentionally produce disease or intoxication in susceptible populations to meet terrorist's aims.
- First act of U.S. Biowarfare 1763
 - Sir Jeffrey Amherst ordered British troops to give blankets infected with smallpox to Indian tribes

3 Critical Elements for Bioterrorism

- Perpetrators
 - State sponsored
 - Insurgent rebels
 - Doomsday/cult-type groups
 - Nonaligned terrorists
 - Splinter groups
 - Lone offenders

- Biologic Agent
 - >12 nations either have or are pursuing programs to develop biologic weapons
 - Reported loss of biologic agents from former Soviet Union
 - Technical means to disseminate agent

Logistics for Biologic Attack

- Variable access to biologic agents
 - Up until recently B. anthracis could be obtained from reference collections
 - Requires some technical know how and equipment but nothing out of the ordinary

- Methods to disperse agents generally available
 - Commercial products available that disperse small particles (<10 microns)

- Surprise, likely a silent attack requiring several days before being detected
 - Expect unusual means of deployment
Biologic Agent Properties

- High infectivity
 - Small dose required to produce disease
 - Spread person to person for secondary effect
- Either fatal or highly incapacitating
- Can be dispersed and stable to environment once released
- No effective prophylactic or treatment measures
 - Potentially could genetically alter agent for this effect

Soviet Program

- Between 1972 & 1992 Soviet launched a full scale effort to generate biologic weapons
 - Biopreparat guise was as a pharmaceutical company
 - ~40 different facilities
 - At maximum could produce 2 tons of anthrax spores per day
- At the program’s peak > 30,000 people worked full time on this program
- Parts of program re-enacted in Iran, Iraq, & North Korea

Category A Agents

- Agents that can:
 - Easily disseminated or transmitted from person to person
 - Causes high mortality & potential for major public health impact
 - Could cause panic and social disruption
 - Requires special action for public health preparedness

Class A Agents

- Variola major (Smallpox)
- Bacillus anthracis (Anthrax)
- Yersina pestis (Plague)
- Clostridium botulinum toxin (Botulism)
- Francisella tularensis (Tularemia)
- Filoviruses
 - Ebola (Ebola hemorrhagic fever)
 - Marburg (Marburg hemorrhagic fever)
- Arenaviruses
 - Lassa (Lassa fever)
 - Junin (Argentine hemorrhagic fever)

Category B Agents

- Agents that can:
 - Moderately easy to disseminate
 - Causes moderate morbidity & low mortality
 - Requires special enhancements of CDC’s diagnostic capacity and disease surveillance

Class B Agents

- Coxiella burnetii (Q Fever)
- Brucella spp. (Brucellosis)
- Burkholderia mallei (Glanders)
- Alphaviruses
 - Venezuelan encephalomyelitis
 - Eastern & Western encephalomyelitis
- Ricin toxin (castor beans)
- Epsilon toxin from Clostridium perfringes
- Staphylococcus enterotoxin B
Class B Agents Spread by Food and Water
- Salmonella spp.
- Shigella dysenteriae
- E. coli (O157:H7)
- Vibrio cholerae
- Cryptosporidium parvum

MMWR April 21, 2000

Category C Agents
- Agents:
 - Availability
 - Ease of production and dissemination
 - Potential for high morbidity and mortality and major health impact

MMWR April 21, 2000

Class C Agents
- Nipah virus
- Hantaviruses
- Tickborne hemorrhagic fever viruses
- Tickborne encephalitis viruses
- Yellow fever
- Multidrug-resistant tuberculosis

MMWR April 21, 2000

Anthrax: Historical Perspective
- Cited in the book of Genesis
 - Referred to as the 5th plague in 1491 BC
 - Described as “killing the Egyptian’s cattle”
- 17th Century, “Black Bane” swept through Europe causing animal & human death
- Normally, disease of grazing animals
 - Anthrax spores found in soil
- Occupational outbreaks described in the 1800’s
 - Wool sorter’s disease

MMWR April 21, 2000

Anthrax (Bacillus anthracis)
- Most countries attempting a biologic weapons program had or have anthrax
- To weaponize, product must be milled (1-5 micron size) & overcome electrostatic forces
 - Microencapsulation or surfactants
 - “Infective dose” data likely inaccurate with new forms
- Pathogen attacks monocyte
 - Protective antigen with lethal factor & edema factor
 - Toxin causes release of IL-1beta & TNF-alpha

MMWR April 21, 2000
Anthrax (Bacillus anthracis)
- Routes of transmission: skin, GI tract, and inhalation of spores
 - Not spread person to person
- Most cases will occur in first two weeks of exposure but additional cases will present over next month (Sverdlovsk, USSR)
- Initial symptoms that of a cold or flu then abruptly turn to respiratory distress
 - Dyspnea and chest discomfort common
 - Rhinorrhea uncommon
- Untreated disease is ~90% fatal
 - Mediastinal widening & meningitis ~50%
 - High probability of bacteremia

Situation Following Dissemination of Spores in U.S. Mail
MMWR 50(Dec 7): 1077-1079, 2001
- 22 Anthrax clinical case exposures
 - 11 Inhalational cases
 - Robert Stevens, 63, photo editor, the Sun, American Media Inc., Boca Raton, Fla. Died Oct. 5.
 - Kathy T. Nguyen, 61, New York City hospital worker. Died Oct 31
 - 94 yr woman resident Oxford, CT Died November 21
 - 11 Cutaneous cases
 - 7 Confirmed
 - 4 Suspected

Shopping Mall Scenario
Osterholm, M.
- Anthrax spores aerosolized into ventilation system
 - Of 10,000 people present 9,000 exposed
 - Attack announced 24 hours later
- 90% of those exposed are started on antibiotic by the end of day 2
- 4950 hospitalized
 - 2925 require ICU
 - 2801 require ventilator
 - 855 deaths

Anthrax
- During a shift change at a plant in Russia milling anthrax spores, a filter was temporarily removed allowing release of spores into air
- Release focused on narrow band of 4km downwind
- 77 cases & 66 deaths
- Livestock killed up to 50 km

Outline of Washington, DC
Office of Technology Assessment 1993

Attack on Major U.S. City Using Aerosolized Anthrax Spores
- 3 Scenarios
 - Clear Calm Night = 300 km² Area
 - No Wind
 - Deaths 1-3 Million
 - Overcast Day or Night = 140 km² Area
 - Moderate Wind
 - Deaths 420,000-1.4M
 - Clear Sunny Day = 46 km² Area
 - Light Breeze
 - Deaths 130,000-400,000

Inhalation Anthrax
Mediastinal widening with inhalation anthrax
JAMA 1999:281:1735-1745
Anthrax Adjunct Therapy

- Newer fluoroquinolones
 - Not all FDA approved but likely effective:
 - Anthrax
 - Plague
 - Tularemia
 - Brucellosis
 - Offers advantage as once a day therapy
 - In emergency can treat twice the number of patients for same volume of drug
- Efforts also directed at blocking anthrax toxin virulence
 - Toxin made of three proteins, 1st attaches to cell & injects the 2 other proteins
 - Have identified cell receptor for toxin & structure of lethal factor

Plague (Yersina pestis)

- Acute febrile lymphadenitis or bubonic plague
 - Result of infected flea bites, rodents serve as flea reservoir
 - Generally 2-8 day incubation period following flea bite
 - Bacteria move via cutaneous lymphatics to regional lymph node
 - Y. pestis phagocytized by PMN’s where bacteria multiply
 - Sudden onset of fever, headache, chills, & weakness
 - Within 24 hours classic genital, axilla, or neck bubo (Do not IND bubo-very infectious)
 - Can have pustules, vesicles, eschar, or papular lesions
 - Purpura can progress to necrosis and distal gangrene
 - Called the Black Death

Plague (Y. pestis)

- Estimates to have killed ~25% of Europe’s population
- Septicemia, pneumonic, or meningeal forms
 - Cultures of blood, sputum, bubo, CSF likely to be positive
- Pneumonic form(Most likely form for terrorists)
 - Patients present with fever, lymphadenopathy, chest pain, hemoptysis
 - Pneumonic form can be spread person to person
 - CXR consistent with bronchopneumonia, confluent consolidation, & cavities may be present
 - Untreated mortality >50%

Tularemia (Francisella tularensis)

- Named for work done by Dr Edward Francis & for work in Tulare County (CA)
- Rabbit or Deerfly fever / Marketmen or Obara’s Disease
- Primarily occurs between 30 & 71 degrees latitude
- Most common between June-August & again in December (bug & hunting season)
- 6 classic forms (ulceroglandular, glandular, oculoglandular, pharyngeal, typhoidal, & pneumonic)
- Symptoms: fever, chills, headache, malaise, anorexia, & fatigue. Cough, myalgia, emesis, pharyngitis, & diarrhea

Tularemia (F. tularensis)

- Continued
 - Fever (>101 F) typically for few days, then abates, then fever & symptoms return
 - Spread by bite of blood feeding insect, contact with contaminated animal products, aerosolized droplets, contaminated water, or animal bites
 - No human to human transmission
 - 3-5 days after bug bite get local papule which over next few days ulcerates, organism spreads via lymphatics, affected tissue will show focal necrosis and may caseate
Smallpox

- Variola major (Orthopox virus)
 - No animal or environmental reservoir
- Very stable in variety of climates
- Some seasonal variation
 - Winter & early spring
- Small infectious dose
 - 1 to 2 virions
 - Likely 4 to > 10 secondary cases per index case
- Last U.S. case 1949

Clinical Course for Smallpox

- Inhale infected droplet or contact with infected material
- Day 1-5 virus spreads lungs to lymph nodes
- Day 6-17 virus moves to liver & spleen to replicate
 - Patient without symptoms & not contagious
- Day 18-20 Fever, fatigue, emesis, sores in mouth & throat
 - Patient now highly contagious
 - Must be within 6 feet for prolonged period
 - Not as contagious as measles, chickenpox, or flu
- Day 21-37 Small bumps noticed, beginning of fluid filled pustules which will scab and fall off
 - Patient contagious until scabs fall off
 - Likely stage of patient’s death

Smallpox Meschede Hospital 1970

- Patient admitted with smallpox (6 day hospital stay)
- Placed in respiratory isolation, hospital was under isolation precautions for flu
- Responsible for 17 cases over following two weeks and 2 additional cases later
 - One case, patient just stayed a few minutes
- Cases occurred throughout hospital & despite patients & healthcare workers all likely being vaccinated

Contraindications to vaccination

- Pregnancy
- Breast Feeding
- HIV
- Eczema
- Organ transplant patients
- Chemotherapy or other forms of immune suppression
- Vaccination of 1 million persons
 - A clinic over two 8 hour shifts inoculate 5,900
 - 20 clinics per state
 - Vaccination requires 15 needle pricks
 - 39 Severe eczema reactions
 - 12 Encephalitis
 - 1 Death

Smallpox Vaccination & ADR’s

- Civilian vaccination program
 - Jan 24th through Feb 28th 12,690 civilians immunized
 - No life threatening events
 - Eczema vaccinatum, SJS, Fetal vaccinia, encephalitis, Progressive vaccinia
 - 2 moderate to severe events
 - Generalized vaccinia, Ocular vaccinia, Pyogenic infection at site
 - 4 serious & 46 nonserious adverse events
 - Fever (2), rash (2), malaise (2), pruritis (2), hypertension (2), pharyngitis (2)
Department of Defense Armed Forces
Epidemiology Board Recommendations for Prophylaxis

- **Anthrax** (*B. anthracis*)
 - Ciprofloxacin (Post Exposure & Treatment)
 - Doxycycline

- **Tularemia** (*Francisella tularensis*)
 - Ciprofloxacin
 - Doxycycline
 - Gentamicin (Treatment)

- **Plague** (*Yersina pestis*)
 - Ciprofloxacin
 - Doxycycline
 - Gentamicin (Treatment)

- **Q Fever** (*Coxiella burnetti*)
 - Doxycycline (Post Exposure & Treatment)

- **Glanders** (*Burkholderia mallei*)
 - Doxycycline

- **Brucellosis** (*Brucella spp.*)
 - Doxycycline

Bioterrorism Summary

- Virtually no U.S. trained physician has seen a clinical case of smallpox, anthrax, plague, etc.

- In initial stages symptoms of biological agents infection are fairly nonspecific
 - Difficult to identify & determine timing of attack

- Clustering of cases may be the clue
 - Syndromic surveillance of ED’s
 - Work attendance & demand for OTC medications

- Need to identify pathogen and if bacterial pathogen, do antibiotic susceptibilities
- Response plans are improving
 - 7000 emergency personnel ready to go
 - Metropolitan Medical Response Plans
 - Would still expect significant public panic

- Morbidity and mortality would be significant for persons initially exposed

Bioterrorism Summary

“...it’s not a matter of if, but when, which agent, & how bad will it be.” M. Osterholm

- Incredibly complicated situation, likely to worsen over time
 - Everyone has been drafted for this war
 - Glass half empty vs half full syndrome

- Solutions to bioterrorism will likely begin to unfold, vaccination programs will grow

- At the present time, we are closing the gap on being prepared for a biological attack
 - Planning & Logistics
 - Supplies, Vaccines, & Medications
 - Personnel