Meningitis & CNS Infections

John C. Rotschafer, Pharm. D., FCCP
Professor
Experimental Clinical Pharmacology
College of Pharmacy
University of Minnesota

IDSA Meningitis Guidelines CID 2004

CNS Infections

- Meningitis
 - Infection of the subarachnoid space with meningeal involvement
 - Mechanical barriers intact vs. traumatic alteration
- Encephalitis
 - Inflammation of brain
- Meningoencephalitis
 - Inflammation of brain with meningeal involvement
- Shunt or Foreign Device Infections
 - Infected VP or VA shunt
 - CSF pressure monitoring devices
- Brain Abscess
- Pathogens may be bacterial, TB, viral, fungal, or parasitic

Meninges

Dura Mater → Skull
Arachnoid → Subdural Space
Pia Mater → Subarachnoid Space
CSF Channel → Brain

Capillary of Choroid Plexus (BCSFB)

Blood Brain Barrier (BBB)

Normal Tissue Capillary

About 85% of CSF produced by the choroid plexus which also controls the constituency of CSF

CSF volume varies by age with a normal adult having a steady state volume of ~150cc
CSF

- CSF travels in one direction through the ventricles and into the spinal column
 - Never communicates again with the point of origin
 - CSF cleared by arachnoid villi & venous plexus in spinal column
 - Creates problems for direct antibiotic placement
 - Intraventricular- drug injected into one of the lateral ventricles
 - Intracisternal- drug injected into the cisternal space at base of the skull
 - Intrathecal- drug injected into the subarachnoid space at L4-L5

Hydrocephalus

- Cause
 - Rate of CSF production exceeds rate of clearance
 - Blockage of CSF outflow
- Therapeutic Dilemma
 - Lateral ventricles expand outward compressing brain against the skull
 - Children require shunt placement to control CSF volume and resulting pressure
 - VP or VA shunts
 - Shunts need to be modified as child grows
 - Shunt can become infected

Meningitis Bacterial Pathogens

- Mechanical Barriers Intact
 - *S. pneumoniae* (pneumococci)
 - *N. meningitidis* (meningococci, Groups A,B,C,Y, & W135)
 - *H. influenzae* (type B or Hib)
 - Immunizations may also affect likely pathogen
 - Special situations *B. anthracis*
 - Traumatic alteration or other risk factors
 - *S. aureus*
 - *E. coli* or *P. aeruginosa*
 - May depend on circumstances

Meningitis Bacterial Pathogens

- Neonatal
 - Children ≤ 1 month of age
 - Pathogens acquired from birth canal
 - *E. coli*
 - Group B Streptococci (*S. agalactiae*)

Listeria monocytogenes

- Uncommon CNS pathogen in adults
 - More commonly seen in the young, old, alcoholics, & immunocompromised
 - Gram positive coccobacilli but can be confused as gram positive diplococcic or dipthroid
 - At risk patients should have empiric coverage for this pathogen
 - Probably best treated with Penicillin G or Ampicillin plus gentamicin
 - TMP/SMX maybe an alternative

Pathogenesis

- Most common cause is hematogenous spread
 - Nasal colonization (Hib & *N. meningitidis*)
 - Close contacts of patient need prophylactic antibiotic
 - Organisms introduced to systemic circulation
 - Bacteria seeded into meninges via bloodstream
- Contiguous spread
 - Parameningeal infection (ears, sinuses, etc) seed pathogens to meninges
- Traumatic
 - Direct mechanical seeding of meninges
What's New From ICAAC 1999

Antimicrobial Agents of First Choice and Alternative Choice in Treatment of Enterobacteriaceae, Haemophilus influenzae, and Escherichia coli (meningococcal)

Bacterial Meningitis: Most Likely and Empiric Therapy by Age Group

Antimicrobial Agents of First Choice and Alternative Choice in Treatment of Meningitis Caused by Gram-positive Microorganisms

Morbidity & Mortality
- Seizure Disorder
- Blindness
- Deafness
- Learning Disabilities
- Death

Intraventricular and Intrathecal Antibiotic Dosage Recommendation

Antibiotic	Dose (mg)	Expected CSF conc (mg/L)
Amphotericin B | 0.05-0.25 mg/d to 0.05-1 mg 1-3 times weekly | --
Nalidixic acid | 500 | --
Telithromycin | 500 | --
Vancomycin | 500 | --
Penicillin G | 200,000 | --
Dexamethasone
Tunkel AR et al IDSA Guidelines CID 39(November) 2004

- Generally recommended for children & adults with proven or suspected *S. pneumoniae* or *H. influenzae* meningitis
- Administer steroid 10-20 minutes prior to (or time of) starting antibiotics
 - Dexamethasone intravenously 0.15 mg/Kg Q6H for two or four days

Antibiotic Therapy for Bacterial Meningitis

- Start antibiotics ASAP
 - Get diagnostic studies prior to antibiotic therapy
 - Start steroids prior to antibiotics
 - Pick *cidal* antibiotics with low molecular weight, low degree of protein binding, & are lipophilic
- Duration
 - *N. meningitidis* & *H. influenzae* 7 days
 - *S. pneumoniae* 10-14 days
 - *S. agalactiae* 14-21 days
 - Aerobic gram negatives 21 days
 - *L. monocytogenes* >21 days

Management algorithm infants and children with bacterial meningitis

<table>
<thead>
<tr>
<th>Suspension for bacterial meningitis</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunosuppression, history of selected CNS diseases, papilledema, altered consciousness, or focal neurologic deficit</td>
<td>Blood cultures STAT</td>
<td>Dexamethasone + empirical Antimicrobial therapy</td>
</tr>
<tr>
<td>Blood cultures and lumbar puncture STAT</td>
<td>Yes</td>
<td>Dexamethasone + empirical Antimicrobial therapy</td>
</tr>
<tr>
<td>CSF findings c/w bacterial meningitis</td>
<td>Negative CT scan of the head</td>
<td>Yes</td>
</tr>
<tr>
<td>Continue therapy</td>
<td>Perform lumbar puncture</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Recommendations for antimicrobial therapy in adult patients with presumptive pathogen identification by positive gram stain

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Recommended Therapy</th>
<th>Alternative Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>Ceftriaxone or cefotaxime</td>
<td>Meropenem (C-III), fluoroquinolone (B-II)</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>Ceftriaxone or cefotaxime</td>
<td>Ciprofloxacin, rifampin</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Ceftriaxone or cefotaxime</td>
<td>Meropenem (C-III), fluoroquinolone (B-II)</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>Ceftriaxone or cefotaxime</td>
<td>Ciprofloxacin, rifampin</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>Ceftriaxone or cefotaxime</td>
<td>Ciprofloxacin, rifampin</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td>Ciprofloxacin</td>
<td>Rifampin, meropenem</td>
</tr>
</tbody>
</table>

Antibiotic Prophylaxis

- *H. influenzae*
 - Rifampin
 - Child 20 mg/Kg up to 600mg Qday X 4 days
 - Adult 600mg Qday X 4 days
 - Vaccinate if appropriate
- *N. meningitidis*
 - Ciprofloxacin
 - Rifampin
 - Child (>1 month) 10 mg/Kg up to 600mg Q12H X 2 days
 - Adult 600mg Q12H X 2 days

What's New From ICAAC 1999
Bacterial Meningitis & Vaccination

- Prior to pediatric conjugate vaccines, *H. influenzae* type B (Hib) & *S. pneumoniae* were common cause of meningitis
- Today *H. influenzae* in children < 4 yrs rare in USA
- Prior to immunization, most common pathogen for that age group
- Invasive *S. pneumoniae* disease virtually eliminated among children vaccinated
- Quadrivalent vaccine (Groups A, C, Y, & W135) available for *N. meningitidis* (Group B not included)

Meningitis Viral Pathogens

- Causes
 - Coxsackie, Echo, & Enteroviruses cause ~85% cases
 - Mumps & Epstein Barr
 - Influenza A & B,
 - Lymphocytic Choriomeningitis Virus & CMV
 - HSV & varicella zoster
 - Arboviruses (St Louis, La Crosse, & West Nile)
- No definitive therapy for most viral disease
 - Support patient
 - Acyclovir for HSV I & Mosquito bite prophylaxis

Work up for Meningitis

- Physical Exam
 - Brudzinski’s & Kernig’s sign
 - Nuchal rigidity
 - Papilledema
- Lumbar puncture to obtain CSF
- Chemistry (glucose & protein)
- Cytology (WBC# & %PMN’s)
- Gram stain or rapid identification test (< 24hrs)
- CIE, coagglutination, or latex agglutination
- PCR (N. meningitidis, S. pneumoniae, H. influenzae, S. agalactiae, L. monocytogenes & enteroviruses)
- Lactate (>4.2 mmol/L considered positive for bacterial meningitis)
- Procalcitonin (> 5 micrograms/L suggestive of bacterial meningitis)
- C-reactive proteins (CRP) (Elevated in bacterial meningitis)
- Culture for pathogens (> 24hrs)
- Blood, Urine, & Sputum Cultures

Patient Complaints

- Headache
- Nausea
- Emesis
- Fever
- Photophobia
- Seizure
- Personality Changes
- Changes in mental status
 - Irritable, delirium, drowsy, lethargy, or coma

Eye Ground Exam in Meningitis

- Normal
- Papilledema

Brudzinski’s Sign

[Diagram of Brudzinski’s Sign]
Kernig’s Sign

Typical Patient with Bacterial Meningitis
- CSF cloudy
- Opening CSF pressure 200-500 mm (water)
- WBC 1,000-5,000/mm3 (>80% Neutrophils)
- Protein 100-500 mg/dL
- Glucose < 40 mg/dL
- CSF glucose/Blood glucose ratio ≤ 0.4
- Gram Stain positive 60-90%
- CSF culture positive 70-85%

Tunkel AR et al IDSA Guidelines CID 39(November 2004)

Clinical Presentation and Diagnosis
Abnormal CSF-findings by type of meningitis

<table>
<thead>
<tr>
<th>Type</th>
<th>WBC (mm³)</th>
<th>Differential</th>
<th>Protein (mg/dL)</th>
<th>Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>< 5</td>
<td>>90% mono’s</td>
<td>< 50</td>
<td>50-66% serum</td>
</tr>
<tr>
<td>Bact</td>
<td>400-100,000</td>
<td>>90% PMN’s</td>
<td>80-500</td>
<td>< 50% serum</td>
</tr>
<tr>
<td>Viral</td>
<td>5-500</td>
<td>>50% lymphs+</td>
<td>30-150</td>
<td>NML/low</td>
</tr>
<tr>
<td>Fungal</td>
<td>40-400</td>
<td>>50% lymphs</td>
<td>40-150</td>
<td>NML/low</td>
</tr>
<tr>
<td>T.B.</td>
<td>100-1,000</td>
<td>>80% lymphs+</td>
<td>40-150</td>
<td>NML/low</td>
</tr>
</tbody>
</table>

initially CSF WBC may be PMN’s but will convert to Lymph’s over time

Brain Abscess
- Spread
 - Contiguous focus
 - Sinuses, middle ear, dental infection
 - Hematogeneous spread from primary site
- Location
 - Frontal or temporal most common
 - Parietal vs cerebellar vs occipital
 - Epidural
 - Subdural

Brain Abscess
- Microbiology
 - Anaerobes
 - Streptococci (S. milleri)
 - Staphylococci
 - Gram negatives uncommon
 - Fungi & parasitic infections
- Risk Factors
 - Trauma, neurosurgery, HIV, immunocompromised, sinusitis, or mastoiditis

Brain Abscess
- Patients present similar to meningitis
- Focal neurological defects occur later in the course of the disease
- Headache, fever, papilledema (avoid LP), or evidence of space lesion in CNS
- Therapy includes high dose antibiotics (6-8 wks), neurosurgery, & +steroids
Encephalitis

- Viruses USA
 - Eastern & Western Equine
 - St Louis
 - West Nile
 - California group
- Other world viruses
 - Venezuelan equine
 - Japanese Encephalitis
- Other viral concerns
 - HSV, mumps, measles, VZ, EB, CMV, & Rabies

Conclusions

- Great progress made with immunizations for possible meningeal pathogens
- CNS infections still have mortality of ~30%
- Rapid diagnosis and treatment imperative to optimal outcome
- Role of steroids better defined
- Much work needs to be done in diagnosing and treating viral, fungal, and parasitic disease