MICROBIOLOGY I

Laurie Baeker Hovde
B.S., MT (ASCP)

GRAM STAIN

• Gram stain result provides the first clue
 • quick, easy, diagnostic tool
 • can guide empiric therapy
 • divides bacteria into two groups
 • positive = blue or purple
 • negative = red or pink
 • determines cell morphology
 • i.e. shape, size, and arrangement

OXYGEN REQUIREMENTS

• anaerobic = intolerant of O2, require proper handling and special conditions for growth
 • specific request required for I.D.
• aerobic = utilizes O2 and grows well in an atmosphere of room air
• facultatively anaerobic = will grow aerobically or anaerobically and includes most clinically significant “aerobes”
Gram positive

- cocci (round or spherical shape)
- anaerobic
- Peptostreptococcus species
 - part of indigenous or normal flora
 - “opportunistic pathogens” = will only cause infection if the integrity or immunity of the host is compromised
Gram positive

- cocci
- aerobic
- catalase test (H2O2 > H2 + O2)
 - positive = Staphylococcus
 seen as groups or clusters on Gram stained smear
 - normal flora of surface epithelium

Gram positive

- coagulate test (an enzyme that binds fibrinogen)
 - positive = S. aureus
 - a virulent pathogen
 - skin infections, pneumonia, osteomyelitis,
 food poisoning, toxic shock syndrome
 - MRSA (50% nationwide), VISA, VRSA
 - negative = “SCN”
 - S. epidermidis - SBE
 - S. saprophyticus - UTI

Gram positive

- cocci
- aerobic
- catalase test (H2O2 > H2 + O2)
 - negative = Streptococcus
 seen scattered, in pairs, and as chains on Gram stained smear
 - hemolytic properties on blood agar
 - beta, alpha, gamma
Gram positive

- cocci
- aerobic
- gamma or alpha hemolytic
- bile-esculin test (esculin hydrolysis in the presence of bile)
 - positive = Strep, group D
Gram positive

Strep, group D
- growth in 6.5% NaCl
- PYR test (to see if the organism has the enzyme that hydrolyzes the PYR substrate)
 - positive = Enterococcus
 E. faecalis (80-90%), E. faecium
 UTIs, wound infections, intraabdominal abscesses, nosocomial infections
 “VRE” (1988)

Gram positive

Strep, group D
- growth in 6.5% NaCl
- PYR test
 - negative = Strep, group D, not Enterococcus
 - S. bovis – main human pathogen
 - in this group

Gram positive

- cocci
- aerobic
- beta hemolytic
- PYR test
 - positive = Strep, Group A (S. pyogenes)
 pharyngitis, scarlet fever, skin and soft tissue infections (“the flesh eating strep”)
 autoimmune sequelae = glomerulonephritis, rheumatic fever
Gram positive

- PYR test
 - negative = other
- CAMP test (synergism between Group B Strep and S. aureus produces an enhanced arrow-shaped zone of hemolysis at the intersection) …OR
- Hippurate hydrolysis (a positive test results in a colored end product after addition of ninhydrin reagent)

Gram positive

- CAMP test
- Hippurate hydrolysis
 - positive = Strep, Group B
 - GBS or S. agalactiae
 - most common cause of neonatal sepsis and meningitis
 - amnionitis, endometritis in pg women
 - blood, skin/soft tissue infection, pneumonia
 - can be carried asymptomatically

Gram positive

- CAMP test and Hippurate hydrolysis
 - negative = Strep, Group C, F, G, S. milleri
- Commercial latex agglutination tests
 (classifies beta-hemolytic Streptococcus into Lancefield groups in < 1 hour)
 - S. milleri and Strep, Group F: urogenital tract infections, abscesses
 - Strep, Group C an G: pharyngitis, postpartum sepsis, rash, bacteremia
Gram positive

- cocci
- aerobic
- alpha hemolytic
- Optochin test (disk susceptibility test)
- Bile solubility test (positive colonies autocatalyze or dissolve in the presence of bile salts)

- Optochin test and Bile solubility test
 - sensitive/soluble = S. pneumoniae (pneumococci)
 - seen as lancet-shaped pairs on Gram stain
 - community-acquired pneumonia, otitis media, sinusitis, meningitis – primarily in children < 5 years old
 - 75% are Penicillin I or R in U.S.
 - Prevnar™ vaccine (2000)

- Optochin test and Bile solubility test
 - resistant/insoluble = S. viridans
 - a miscellaneous group of Strep that are part of the normal flora of oral, respiratory, and GI mucosa
 - opportunistic pathogen, low virulence
 - major etiological agent of endocarditis in the U.S.
Gram positive

• bacilli (rectangular shape)
• anaerobic
 • Clostridium species
 spore-formers
 found in soil, water, dust, sewage, and in
 the intestinal tracts of animals and humans
 produce nasty toxins that are often
 responsible for the symptoms

Gram positive

• C. difficile
 • antibiotic associated diarrhea and
 pseudomembranous colitis; most common
 agents are beta-lactams and clindamycin
 • nosocomial infection
 • carried asymptomatically as part of GI flora in
 up to 50% of kids < 1 year old
 tissue culture = gold standard; also EIA,
 latex agglutination, chromatographic assay

Gram positive

• C. perfringens
 • gas gangrene – toxin breaks down muscle
 • third most common cause of bacterial food
 poisoning in the U.S. (behind Salmonella
 and S. aureus)
 characteristic double zone of hemolysis
 around colonies
Gram positive

- C. tetani
 - tetanus
 - often associated with puncture wounds
 - disease course: autolysis, neurotoxin release, binding to cells in CNS, blockage of inhibitory impulses → prolonged muscle spasms
 - “T” in DPT vaccine

Gram positive

- C. botulinum
 - botulism
 - rare, but often fatal
 - the mechanism of action of the toxin is similar to C. tetani, binding site differs
 - the three manifestations of the disease are food, wound, and infant botulism
 - trademark is acute flaccid paralysis

Gram positive

- Propionibacterium, Eubacterium, Bifidobacterium, Actinomyces
- Lactobacillus
 - prevents yeast infection, competes for nutrients
 - found in yogurt and other foods
- Mobiluncus
 - not part of normal flora
 - associated with bacterial vaginosis
Gram positive

- bacilli
- aerobic
- Listeria monocytogenes
 - primary habitat is soil and decaying vegetable matter
 - will multiply at refrigeration temperatures
 - contaminated foods are the primary vehicles of transmission
 - listeriosis ~ 2500 cases/year in U.S.

Gram positive

- Listeria monocytogenes
 - seen almost exclusively in neonates, pregnant women and immunocompromised individuals
 - untreated/transplacental infection can lead to premature labor, septic abortion, neonatal meningitis
 - colony morphology closely resembles Strep, group B – differentiate using Gram stain and catalase

Gram positive

- bacilli
- aerobic
- Erysipelothrix - veterinary pathogen, human infection subsequent to animal exposure is rare
- Corynebacterium - most species are harmless saprophytes (diphtheroids)
 - C. diphtheriae – causes diphtheria
 - “D” in DPT vaccine
Gram positive

- Bacillus species = spore-formers
 - most are troublesome contaminants
- B. anthrasis: anthrax - rare
- B. cereus: food poisoning
- Nocardiophiles
 - inhabit soil, vegetation, water
- infection (rare) is subsequent to inhalation or inoculation through breaks in the skin

Gram negative
Gram negative

- cocci or diplococci
- anaerobic
- Veillonella species
 - part of the normal flora of the upper respiratory tract
 - seldom a significant pathogen

Gram negative

- cocci or diplococci
- adjacent sides are flattened, characteristic kidney or coffee bean shape
- aerobic
- oxidase test (organisms that produce this enzyme oxidize a substrate and form a purple end product)
 - positive = Neisseria species and Moraxella catarrhalis

Gram negative

- Neisseria meningitidis (meningococci)
 - can colonize naso-pharynges
 - can disseminate and cause meningitis
 - highest incidence = school age (5-25 y)
 - can progress rapidly and result in fulminant death within a few hours after the onset of symptoms
 - rapid diagnosis (latex agglutination) and aggressive treatment are imperative
Gram negative

- Neisseria gonorrhoeae (gonococci)
 - many strains are penicillin-resistant (PPNG)
 - causes gonorrhea
 - the most frequently reported communicable disease in the U.S.
 - intracellular G (-) diplococci = diagnostic
 - neonatal gonococcal conjunctivitis
 - antibiotic eye drops at birth have almost eliminated the disease in developed countries

Gram negative

- Moraxella (Branhamella) catarrhalis
 - normal flora of upper respiratory tract
 - acute localized infections - otitis media, sinusitis, conjunctivitis, bronchopneumonia
 - systemic diseases - endocarditis, meningitis: most cases are in elderly patients
 - usually beta-lactamase positive (penicillin-resistant)

Gram negative

- bacilli
- anaerobic
- Bacteroides species (B. fragilis group)
 - predominant flora of the colon
 - most commonly recovered anaerobe in clinical specimens
 - intra-abdominal infections
Gram negative

- bacilli
- anaerobic
- Prevotella, Porphyromonas, Fusobacterium
 - part of normal flora of oropharynx, GI tract, female genital tract
 - some species are important pathogens in oral, dental, and bite infections

Gram negative

- bacilli
- aerobic (or facultative)
- glucose fermentation
 - non-fermenters
 - oxidase positive
 - Pseudomonas species

Gram negative

- Pseudomonas aeruginosa
 - not part of the normal flora in healthy people
 - environmental organism (water, soil, plants)
 - well adapted to survival in harsh environments
 - broad spectrum of disease
 - superficial skin infections to fulminant sepsis
 - major cause of nosocomial infection
 - multidrug resistance is a problem
Gram negative

- bacilli
- aerobic (or facultative)
- glucose fermentation
 - non-fermenters
 - oxidase negative
 - Stenotrophomonas maltophilia
 - Acinetobacter species

Gram negative

- Stenotrophomonas maltophilia
 - recently reclassified (Xanthomonas)
 - ubiquitous in nature, often found in hospital environments
 - may be colonizers or infectious agents
 - septicemia, pneumonia, wound infections
 - often resistant to antibiotics

Gram negative

- Acinetobacter species
 - second most commonly isolated nonfermenter
 - found in nature and in hospital environments
 - more often colonizers than infectious agents
Gram negative

- bacilli
- aerobic (or facultative)
- glucose fermentation
 - fermenters
 - oxidase positive
 - Pasturella
 - Vibrio
 - Aeromonas
 - Plesiomonas

Gram negative

- Pasturella multocida
 - often isolated from infected animal bite wounds
- Vibrio
 - inhabits brackish and salt water worldwide
 - disease is associated with ingestion of contaminated water or seafood
 - can cause cholera and rapid dehydration

Gram negative

- Aeromonas
 - ubiquitous inhabitants of fresh and salt water
 - associated with infected wounds acquired near or in water, or with diarrheal disease
- Plesiomonas
 - also maintains a water habitat
 - primarily associated with gastroenteritis after eating raw shellfish or foreign travel
Gram negative

- bacilli
- aerobic (or facultative)
- glucose fermentation
 - fermenters
 - oxidase negative
 - Enterobacteriaceae (family) - more than 100 recognized species

Gram negative

- Enterobacteriaceae
 - many are normal GI flora in humans and animals, also found in soil and water and on plants
 - common nosocomial pathogens
 - account for 50% of all clinically significant isolates, 50% of septicemia cases, 70% UTIs
 - most microbiology labs use an automated system for I.D. and susceptibility testing

Gram negative

- Enterobacteriaceae
 - enteric pathogens
 - Salmonella: etiological agent of most foodborne gastroenteritis in U.S., typhoid fever
 - Shigella: shigellosis and dysentery
 - Yersinia: the agent of human plague
 - Escherichia coli: most common bacterium isolated in clinical labs
Gram negative

- Enterobacteriaciae
 - others commonly isolated
 - Proteus
 - Klebsiella
 - Providencia
 - Enterobacter
 - Serratia
 - Citrobacter
 - Morganella

Gram negative

- bacilli
- aerobic (or facultative)
- special growth requirements
 - Haemophilus
 - TINY Gram (-) rods
 - require hemin and nicotine adenine dinucleotide (NAD) for growth
 (Chocolate agar)
 - can be normal respiratory flora

Gram negative

- H. influenzae
 - meningitis, conjunctivitis, otitis media
 - Hib vaccine (1985) for protection against the particularly virulent encapsulated strain belonging to serotype B
 - historically a leading cause of disease in children < 5 years old
 - incidence of invasive infection has dropped sharply
Gram negative

- bacilli
- aerobic (or facultative)
- special growth requirements
 - Campylobacter
 - inhabit the G.I. tract of animals
 - transmitted via contaminated food, milk, and water
 - common cause of gastroenteritis in the U.S. (2M/yr); usually self-limiting

Gram negative

- bacilli
- aerobic (or facultative)
- special growth requirements
 - Legionella
 - widespread in the environment, no known animal reservoir
 - Legionnaires’ disease and Pontiac fever
 - transmitted via infected aerosols
 - diagnosis = DFA + culture

Gram negative

- bacilli
- aerobic (or facultative)
- special growth requirements
 - Bordetella pertussis
 - reside on mucous membranes of respiratory tract of animals and humans
 - can cause “whooping cough” (8000/yr)
 - “P” in DPT vaccine (late 1940s)
 - lab diagnosis is difficult; lacks sensitivity
Gram negative

- bacilli
- aerobic (or facultative)
- special growth requirements
- Brucella
 - zoonotic disease, domestic animal reservoir
 - humans acquire via contaminated milk or through occupational exposure
 - brucellosis; a chronic and relapsing febrile disease
 - about 100 cases per year in U.S.

Gram negative

- bacilli
- microaerobic
- special growth requirements
- Helicobacter pylori
 - major habitat is human gastric mucosa
 - etiological agent of gastritis and gastric ulcer
 - diagnosis: serology, breath test, gastric biopsy

Know your bugs!

- Viruses
- Bacteria
- Fungus
Susceptibility Testing

The attempt to predict, using *in vitro* methods, the likelihood of successfully treating an infection with a particular antimicrobial agent.

Testing is based on either the principle of diffusion or dilution.
Disk diffusion Sensitivity Testing (Kirby-Bauer)

- A “standardized” suspension of the organism is used to inoculate agar surface
- Filter paper disks containing abx are placed onto surface of agar
- Abx diffuses into agar and establishes a concentration gradient (rate of diffusion differs among abx)
- Plates are incubated 16-20 hours

Disk diffusion Sensitivity Testing (Kirby-Bauer)

- Zones of growth inhibition are measured (mm)
- Zone size is referenced to NCCLS interpretive chart
- Qualitative results = S,I,R
- Advantages
 - firmly established method
 - relatively inexpensive
 - flexible drug selection
Etest diffusion sensitivity testing

- Variation of disk diffusion method
- Etest strips replace filter paper disks
- MIC is read where “ellipse” (growth inhibition) intersects the strip
- Allows quantitative determination of MIC on agar
- More expensive

MIC/MBC dilution testing

- A range of abx concentrations is established in agar or broth
- The abx concentration is reduced by half with each successive dilution
- Each plate, tube, or well is inoculated with the same amount of bacteria ($10^5 - 10^6$ CFU/mL) and incubated
MIC/MBC dilution testing

• Examine all plates or tubes in the series for growth (colonies or turbidity)
• The MIC is the lowest concentration of abx that inhibits the growth of the bacteria (mcg/mL)
• Reliable, standardized reference method
• Quantitative results
MIC/MBC dilution testing

- MBC testing may be performed with broth dilution method
- Remove an aliquot from “clear” tubes or wells and transfer to an agar plate; incubate
- Each colony represents one viable bacterium
- MBC is the concentration of abx that kills 99.9% or 3-logs of the original inoculum

SIT/SBT testing (Schlichter)

- Measures the activity of the patients own serum (containing one or more abx) against his/her specific pathogen
- Typically test peak sera
- Can be used to detect abx failure
- Labor intensive, many confounding variables, poorly standardized, difficult to reproduce
Automation in the microbiology

- BACTEC (Becton-Dickinson) - an automated method for blood cultures
 - measures CO₂ production by metabolizing bacteria
 - An increase in CO₂ above baseline signals a positive culture
- Others = BacT/Alert, ESP
Automation in the microbiology

• Sensitivity testing
 • Utilize robotics, micro-processors, micro-computers to provide results
 • Vitek, Microscan, Sensititre, Pasco, Sceptor, Esteem
 • Rapid results (3.5 - 8 hours)

Automation in the microbiology

• Vitek (1966)
 • Uses “test cards”
 • Micro-wells contain either substrate (ID) or antimicrobials (sensitivity)
 • Wells are filled with bug suspension
 • Photometer measures color (ID) or turbidity (sensitivity) changes over time
 • Computer compiles data and IDs the organism and/or calculates MIC
Automation in the microbiology
Hypothetical Situation

A pt is recovering from hip surgery. The incision becomes infected. A culture of the wound is positive and the organism is identified as P. aeruginosa. The reported MIC of Ciprofloxacin is 1 ug/mL.

1. Is the organism sensitive to Cipro?
2. Should the pt be treated with Cipro?

MIC Breakpoints

- Interpretive categories attempt to correlate in vitro susceptibility data with clinical outcome
- Based on two premises:
 - If bug is inhibited by a concentration of the drug that is readily achievable in patients’ blood, then susceptible
 - If bug is resistant in vitro to achievable concentrations of drug, then patient will not respond to therapy

MIC Breakpoints

- Only apply if:
 - Standard recommended dose of drug is administered by normal routes of delivery to adults with normal renal function
 - General rule:
 • The achievable level of antibiotic at the site of infection should be 2-4 times the MIC if the drug is to be effective
NCCLS Interpretive Standards

Quinolones

Ciprofloxacin

Susceptible ≤ 1
Intermediate 2
Resistant ≥ 4

(Answer #1 is yes!)

Other important considerations

• Level of “active” drug at site of infection
 • protein binding, route of administration, concentration, renal/hepatic function, T 1/2
• Host factors
 • disease, immune status, compliance
• Bug
 • virulence, CFU/mL, mixed infection, resistance factors
• Inoculum effect
 • MIC ≤ 10^5, active infection >10^8