The Importance of Resistance in Gram Positive Bacteria: Epidemiology of Resistance, Resistance Mechanisms, & Future Implications

John C. Rotschafer, Pharm. D.
Professor
College of Pharmacy
University of Minnesota

Objectives

- Identify current & future antibiotic treatment options for gram positive infections
- Identify underlying mechanisms of antibiotic resistance for Staphylococci, Enterococci, & S. pneumoniae
- Identify two unique molecular features of CA-MRSA
- Identify common clinical features associated with VISA & VRSA infections
- Identify risk groups for CA-MRSA

12 Steps to Prevent Antimicrobial Resistance in Hospitalized Adults

- **PREVENT INFECTION**
 1. Vacinate
 2. Get the catheters out
- **USE ANTIBIOTICS WISELY**
 3. Use local data
 4. Access the experts
- **PREVENT TRANSMISSION**
 5. Isolate the pathogen
 6. Break the chain of contagion
- **DIAGNOSE AND TREAT INFECTION EFFECTIVELY**
 7. Treat infection, not colonization
 8. Know when to say "no" to vanco
 9. Stop treatment when infection is cured or unlikely
- **TREAT INFECTION, NOT CONTAMINATION**
 10. Treat infection, not colonization
- **TREAT INFECTION, NOT COLONIZATION**
 11. Isolate the pathogen
 12. Break the chain of contagion

U.S. Trends in Gram-Positive Resistance

1980 to 2004

- MRSE 80%
- MRSA 55%
- PRSP 35%
- VRE 20%
- VISA
- VRSA

VRE Trends in Study Hospitals

vD. Gamache 2001

Rates of Resistance in Specific Patient Populations

- MRSA: ICU 17.9%, Non-ICU 73.2%
- MRSA: ICU 17.9%, Non-ICU 73.2%
- VRE: ICU 0.7%, Non-ICU 6.6%

* p < 0.05
Nosocomial Bacteremia
Distribution of Pathogens from 49 US Hospitals
n = 10,935

- Coag Neg Staph (32%)
- S aureus (16%)
- Enterococcus (11.1%)
- Candida (8%)
- Viridans streptococci (1.4%)
- All GNR (21.4%)
- Other (10.1%)

VRE vs VSE Bacteremia in Matched Liver Transplant Patients

<table>
<thead>
<tr>
<th></th>
<th>VSE</th>
<th>VRE</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>54</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Mean age (yr)</td>
<td>46</td>
<td>19</td>
<td>0.03</td>
</tr>
<tr>
<td>Males/Females</td>
<td>40/14</td>
<td>31/17</td>
<td>NS</td>
</tr>
<tr>
<td>Mean LOS (d)</td>
<td>43</td>
<td>24</td>
<td>< 0.01</td>
</tr>
<tr>
<td>EF Occurrence</td>
<td>22</td>
<td>7</td>
<td>0.006</td>
</tr>
<tr>
<td>Recurrent episodes</td>
<td>11</td>
<td>1</td>
<td>0.006</td>
</tr>
<tr>
<td>Autopsy infection</td>
<td>57%</td>
<td>35%</td>
<td>0.04</td>
</tr>
<tr>
<td>Mortality</td>
<td>46%</td>
<td>25%</td>
<td>0.04</td>
</tr>
<tr>
<td>Entero at death</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enterococcal Antibiotic Resistance

Enterococci

- Most beta-lactam antibiotic resistance caused by an alteration in penicillin binding proteins (PBP)
- Small percent (~2%) of enterococci are beta-lactamase producing
- Have enzymes that inactivate aminoglycosides
-ypass the effect of vancomycin

Enterococcal Glycopeptide Resistance

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Terminal Peptidoglycan</th>
<th>MIC (mg/L)</th>
<th>Source</th>
<th>Induction</th>
<th>Pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van A</td>
<td>D-Ala-D-Lact</td>
<td>V=64</td>
<td>Acquired</td>
<td>Inducible</td>
<td>E. faecium</td>
</tr>
<tr>
<td>Van B</td>
<td>D-Ala-D-Lact</td>
<td>V>16</td>
<td>Tn 1546</td>
<td>Inducible</td>
<td>E. faecalis</td>
</tr>
<tr>
<td>Van C</td>
<td>D-Ala-D-Ser</td>
<td>V<2</td>
<td>Tn 1547</td>
<td>Inducible</td>
<td>E. faecium</td>
</tr>
<tr>
<td>Van D</td>
<td>D-Ala-D-Lact</td>
<td>V=16</td>
<td>Intrinsic Constitutive & Inducible</td>
<td>E. faecium</td>
<td></td>
</tr>
<tr>
<td>Van E</td>
<td>D-Ala-D-Ser</td>
<td>V=16</td>
<td>Acquired Inducible</td>
<td>E. faecalis</td>
<td></td>
</tr>
</tbody>
</table>

Staph Stinks
How Rosie survived a life-threatening infection.
S. aureus Susceptibility to Vancomycin

<table>
<thead>
<tr>
<th>Susceptibility Type</th>
<th>Vancomycin MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive (VSSA)</td>
<td>≤ 4 mg/L</td>
</tr>
<tr>
<td>S. aureus Reduced Susceptibility (SARV or heterovariant)</td>
<td>1-4 mg/L (Still NCCLS Sensitive)</td>
</tr>
<tr>
<td>Intermediate (VISA or GISA)</td>
<td>8-16 mg/L</td>
</tr>
<tr>
<td>Resistant (VRSA)</td>
<td>≥ 32 mg/L</td>
</tr>
</tbody>
</table>

- Lab needs to backup primary testing with 6mg/L vancomycin overnight plate

Vancomycin Resistant S. aureus (VRSA)

May be the next modern day plague

“The emergence of VRSA would represent the most important issue in antibiotic resistance since the dawn of the antibiotic era. A common, virulent, & transmissible bacterial agent with no known effective therapy would set infectious diseases back 60 years.”

Staphylococcal Resistance

- Virtually all *S. aureus* & *S. epidermidis* are beta-lactamase producers

- Primary mechanism of MRSA or MRSE resistance is an alteration of penicillin binding protein affinity (PBP)

 - MRSA (mecA positive) ~50% hospital & ~20% of community are MRSA PBP 2a or PBP 2’

 - ARV
 - Mechanism not well understood

 - ISA/GISA
Community Acquired Methicillin Resistant S. aureus
Chambers, HF: APUA Newsletter 21(2), 2003

Estimated incidence 5-15% without established risk factors
- Two main clones
 - 1997 North Dakota/Minnesota
 - Los Angeles County

Outbreaks/Risk groups
- Minnesota and North Dakota & elsewhere
- Correctional facilities
- Contact sports
- Native American reservations
- Men having sex with men

Prevalence up to 75% in select groups

Unique features of CMRSA vs nosocomial strains
- Susceptible to antibiotics other than beta-lactams
- CMRSA genotypes different from hospital strains
- Harbor novel methicillin resistance cassette
- Panton Valentine Leukocidin toxin present
- CRMSA occur in patients lacking traditional risk factors

Molecular Biology of CA-MRSA

Staphylococcal Chromosome Cassette
- mec complex & cassette recombinase genes (ccr)
- 5 distinct SCC-mec elements known
- SCC-mec Type IV & V found in CA-MRSA
- Type IV & V causes resistance to beta-lactams

Toxins
- Super antigen enterotoxin H (seh) & enterotoxin O (seo) cause a syndrome similar to toxic shock syndrome
- Panton Valentine Leukocidin (lukS-PV & lukF-PV)
Community Acquired MRSA

- Organism genotypically different from hospital MRSA
 - SCC mec Type IV & V
 - PVL Toxin
 - Enterotoxin H, B, & C
- Can spread rapidly causing necrotic hemorrhagic pneumonia
- May be susceptible to a variety of antibiotics
- Likely will be a growing and concerning healthcare problem in United States and elsewhere

Treatment of CMRSA

Stevens, DL: APUA Newsletter 21(2),2003

- **Soft tissue (Non Toxic)**
 - Linezolid, Vancomycin, Q/D, TMP/SMX, or Tetracycline
- **Pneumonia (Toxic)**
 - Linezolid or Vancomycin
- **Bacteremia (Toxic)**
 - Vancomycin, Q/D, or Linezolid
- **Endocarditis (Toxic)**
 - Vancomycin or Q/D
- **TSS (Toxic)**
 - Linezolid
- **Complicated Skin/Soft Tissue (Toxic)**
 - Vancomycin, Linezolid, or Q/D

VISA & VRSA Background

- Develop in hospital background where vancomycin is overused
- Common patient history
 - Host is compromised with multiple medical maladies
 - HD or PD
 - Indwelling catheter
 - Intra-peritoneal sledge with PD
 - Infection with MRSA or Enterococci
 - Extended duration of vancomycin therapy
 - Patients would have met CDC guidelines
- While VISA’s appear independent, VRSA seems to have acquired resistance from enterococci via vanA plasmid
Vancomycin Resistant *S. aureus* (VRSA)

MMWR 51(26):565-566, 2002 / ICAAC 2002

- June 2002, 40 yr Michigan patient with DM, PVD, & CRF had catheter swab + VRSA
 - Patient maintained on HD
 - Chronic foot ulcerations since April 2001 treated with multiple courses of antibiotic including vancomycin
 - April 2002 toe amputated & developed MRSA bacteremia with infected AV HD graft (VM & rifampin plus graft removed)
 - June 2002 temporary HD catheter exit wound infection with MRSA (Vancomycin MIC 1024 mg/L & vanA & mecA positive), VRE, & *K. oxytoca*

VRSA Pennsylvania

MMWR October 11, 2002

- Patient admitted to hospital for evaluation & treatment of chronic foot ulcer + osteomyelitis
 - Culture revealed *S. aureus* and susceptibility testing suggested decreased susceptibility to vancomycin
 - E-test MIC = 64 mg/L (CDC MIC = 32 mg/L microdilution)
 - mecA & vanA positive
 - Sensitive to chloramphenicol, linezolid, minocycline, quinupristin/dalfopristin, rifampin, & TMP/SMX

- Resistance likely transferred from enterococci

VRSA New York 2004

MMWR 53(15):322-324, 2004

- Urine culture from a LTCF patient grew *S. aureus*
 - Microscan overnight panel Vancomycin MIC = 4 mg/L
 - E-Test Vancomycin MIC > 256 mg/L
 - CDC(NCCLS) Vancomycin MIC = 64 mg/L
 - Routine lab testing may not detect VRSA
 - 24 Hr Vancomycin (6 mg/L) Agar Screening Plate used in conjunction
 - mecA & vanA positive
 - Organism unrelated to 2 previously reported strains
Linezolid Resistance S. aureus

- Resistant enterococci previously reported in clinical trials
- First case of S. aureus developing resistance to linezolid (Tsiodras S, et al. The Lancet 2001;358;207-208)
 - 85 y.o. CAPD pt with MRSA peritonitis (MIC = 2)
 - Linezolid for at least 4 weeks (intolerant to vanco)
 - PD cath not removed - accidental laceration at home
 - Re-hospitalized for recurrent peritonitis - recovered a different MRSA resistant to linezolid (MIC > 32)
- Additional cases of VRE being reported post marketing

Pneumococcal Sentinel Surveillance System
Definition of PCN-R S. pneumoniae

- Sensitive
 - PCN MIC < 0.06 mg/L
- Non-susceptible
 - PCN MIC = 0.12 to 1.0 mg/L
- Resistant
 - PCN MIC > 2.0 mg/L
- NCCLS* may change definition
- Mechanism of resistance is alteration of penicillin binding proteins not beta-lactamase production

Antimicrobial Resistance Trend:
S. pneumoniae, USA, 2002-2004

<table>
<thead>
<tr>
<th>Antimicrobial Agent</th>
<th>TRUST 6 2002</th>
<th>%R</th>
<th>TRUST 7 2003</th>
<th>%R</th>
<th>TRUST 8 2004</th>
<th>%R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin*</td>
<td>18.4</td>
<td>17.3</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>27.5</td>
<td>27.5</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimeth/Sufa</td>
<td>26.0</td>
<td>23.9</td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone (mean/m)</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0.9</td>
<td>0.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of institutions</td>
<td>239</td>
<td>227</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of isolates</td>
<td>7671</td>
<td>4452</td>
<td>4309</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levo - MIC90 (mg/ml)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. pneumoniae Antimicrobial Resistance

TRUST 8 (2003–2004)

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Penicillin</th>
<th>Azithromycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC ≥ 2 µg/mL</td>
<td>National Rate: Penicillin = 18.6% R</td>
<td>National Rate: Azithromycin = 25.4% R</td>
</tr>
</tbody>
</table>

- **4,233 isolates from 220 labs**
- Resistance rates for Michigan and Maine are from TRUST 7 (2002-2003)

Newer & Investigational Therapy for Gram Positives

- Levofloxacin, Moxifloxacin, Gemifloxacin & Gatifloxacin
- Quinupristin/Dalfopristin (Synercid®-Aventis)
- Linezolid (ZyvoxTM-Pharmacia)
- Daptomycin (Cidecin®-Cubist)
- Oritavancin (LY333328-Intermune)
- Telithromycin-(Ketek® Aventis)
- Dalbavancin –(Versicor)
- Glycyclines (GAR 973 –Tigecycline, Wyeth -Ayerst)

Quinupristin/Dalfopristin (Synercid®)

Streptogramin Overview:
- Q/D (RF 59500) in 30:70 (w/w) ratio
 - work in synergy at the ribosome to inhibit protein synthesis
- Bactericidal (pathogen dependent)
- FDA Approved Indications
 - VRE- E. faecium only
 - Complicated Skin Infections-MSSA (not MRSA) S. pyogenes
- ADR’s may limit use
- Subject to drug-drug interactions
Linezolid - Zyvox®
- Oxazolidinone class antibiotic
- Inhibits protein synthesis
- Oral and IV dosage forms
- Metabolized by chemical oxidation
 - Does not inhibit Cytochrome P450 system
 - Mild, reversible inhibitor of MOA
 - Potential interaction with adrenergic, dopaminergic, and serotonergic agents or tyramine-containing food (ephedrine, SSRI’s, pseudoephedrine, dextromethorphan, & dopamine)
 - Agents could increase BP or serotonin syndrome
 - Not significant clinically to date

Linezolid Indications
- FDA Clinical Indications
 - Uncomplicated Skin & Soft Tissue
 - Complicated Skin & Soft Tissue (MSSA & MRSA)
 - Community Acquired Pneumonia
 - Nosocomial Pneumonia (MSSA & MRSA)
 - VRE infections, including bacteremia

Superior results for linezolid vs vancomycin in ventilator-associated pneumonia (VAP)

Subgroup from 2 double-blind, randomized controlled trials in nosocomial pneumonia, n=544 patients with VAP

Clinical cure (%): Superior results for linezolid vs vancomycin in ventilator-associated pneumonia (VAP)

With permission: Kollef M, et al., manuscript submitted September 02.
Ketolides

Telithromycin (Ketek®) Aventis
- Clarithromycin derivative (HMR 3647)
- Effective against macrolide resistant streptococci (erm or mef) & staphylococci (erm)
 - PCN-S, PCN-R & Macrolide-R S. pneumoniae
 - S. pyogenes
 - H. influenzae
 - M. catarrhalis
 - B. pertussis
 - Atypical Respiratory Pathogens
- Usual dose 800 (2-400mg) QD

14 Member Macrolide Structure Macrolides vs. Ketolides

Telithromycin
- Carbamate Extension
- Increased potency via domain II
- Acid Stability
- Sugar
- Cladinose

Telithromycin
- Keto Group
- Acid stability
- Lack of induction of MLSβ resistance

Daptomycin (Cidecin)
- Lipopeptide antibiotic
 - MOA: disrupts cell membrane amino acid transport
 - Concentration-dependent killing
 - $T_{1/2} = 8$ h
 - Protein binding 93%
 - Broad spectrum gram-positive activity
 - MIC ≤ 0.5 mg/L, for MSSA, MRSA, MRSE, & MSSE
 - Enterococcus & Strept
 - New dosage regimens likely 4-6 mg/Kg intravenously QD
LY333328- Oritavancin

- Glycopeptide similar to vancomycin
- Activate against a wide variety of gram-positives, including MRSA & VRE
- Bactericidal, conc-dependent killing
- Long PAE
- Non-renal elimination
- Protein binding (high ~80%)
- Drug very difficult to assay
- Long terminal $T_{1/2}$ (5-7 days)
- Commercial product will be intravenous

Tigecycline
Available ?2006

- Appears to be a bacteriostatic agent exhibiting concentration independent killing
- Available parenterally 100mg LD and 50mg BID
- Likely used for S/S/T, IA, HAP, and CAP
- Good gram negative action (No P aeruginosa or Proteus)
- Good gram positive, anaerobic, and atypical coverage
- Stable 6-8 hrs room temperature, 24 hrs refrigerated
- Cannot mix in Dextrose solution
- Color change from orange to green/black
- Half-life 36hrs

Conclusions

4 Number of new compounds have been introduced & more coming that will address issues with resistant gram positive bacteria
4 Clinicians can help in the education of other healthcare providers regarding appropriate use and dosing of these new & older agents
4 Remember that with every antibiotic prescription you are conducting your own experiment in Darwinian theory