Bacterial Resistance of Respiratory Pathogens

John C. Rotschafer, Pharm.D.

University of Minnesota
Antibiotic Misuse

- ~150 million courses of antibiotic prescribed by office based prescribers
 - Estimated 50-66% of prescriptions unnecessary
- Represents 25% increase over 1980
- Use in children < 15 years 3X greater than other age groups
- Most common Dx
 - Common respiratory
 - URTI
 - Bronchitis
 - Sinusitis
 - Pharyngitis
Antibiotic Misuse

- Enormous problem
 - Problem spans the farmers feedlot to children’s day care center to the physician’s office to the acute care hospital
 - Problem for 3rd world countries & western civilization
 - Pressure on clinician to prescribe
 - Issue that involves patient compliance

- Solutions to this problem will require a multidisciplinary approach
Introduction

- Antibiotic resistance to standard therapy with common bacteria is an ever increasing problem
- Bacteria have strategic advantages
 - Naturally mutate
 - Extraordinary rates of growth
 - Produce a “new generation” of bacteria with genetic advantage
Resistant Bacteria

- AMP-R *H. influenzae*
- PCN- R *S. pneumoniae*
- Multiple antibiotic resistant *Enterococci*
- Methicillin resistant staphylococci
- Vancomycin resistant staphylococci
- *M. tuberculosis*
- *N. gonorrhoeae*
- *S. pyogenes*
- Gram negative bacteria
Antibiotic Therapeutic Approach

- Objective decision making
 - Use antibiotics only when needed
 - Be selective and use minimum number
 - Optimize pharmacodynamic outcome parameters
 - Peak / MIC ratio
 - AUC / MIC ratio
 - Time > MIC
 - Optimize antibiotic dose & interval
Therapeutic Approach

- URTI & LRTI Dilemma
 - Bacterial pathogen & antibiotic susceptibility often unknown
 - Gram stain often not done
 - Sputum or sinus often not cultured
 - + Chest X-ray
- Treatment guidelines may not be current with level of bacterial resistance or incorporate new agents
Antibiotics

- **Antibiotics kill bacteria:**
 - Transport to the site of infection
 - Transport into the bacteria (Influx)
 - Binding to a strategic site
 - PBP
 - Ribosome
 - DNA Gyrase
 - Metabolically poisoning the bacteria
 - Time dependent
 - Concentration dependent
Common Mechanisms of Bacterial Resistance

 - Enzyme is made up of amino acids
 - Altering amino acids sequence changes potency (ESBL)
 - Result of beta-lactamase
 - Open antibiotic beta-lactam ring
 - Regenerate enzyme
 - Over 50 different plasmid enzymes
 - Several chromosomally enzymes
 - Richmond Sykes or Bush Type I enzymes
Antibiotic Destruction

- **Macrolides**
 - Enzyme alters the 50S ribosome
 - Resistance to erythromycin means resistance to all current macrolides
- **Efflux**
 - Newer macrolides still likely effective
Antibiotic Destruction

- Target alteration
 - Beta-lactams
 - Alteration of penicillin binding proteins (PBP’s)
 - Methicillin resistant S. aureus (MRSA) or S. epidermidis (MRSE)
 - alteration of PBP-2
 - Penicillin Resistant S. pneumoniae
 - Enterococcus
S. pneumoniae

- Pneumococcal Sentinel Surveillance System, November 1996)
 - Sensitive (PCN MIC ≤ 0.06 mg/L)
 - Nonsusceptible (PCN MIC 0.12 - 1.0 mg/L)
 - Resistant (PCN MIC ≥ 2.0 mg/L)
S. pneumoniae

- Mechanism of resistance
 - Modification of penicillin binding proteins (PBP’s)
 - Resistance is not the result of beta-lactamase production
 - Magnitude of resistance correlates with extent of PBP alteration
 - Common in serotypes 6B, 9V, 14, 19A, 19F, and 23F
S. pneumoniae Vaccination

- Pneumovax
 - Adult
- Prevnar
 - Pediatric
- Reported shortages with both vaccines
Haemophilus influenzae

Ampicillin Resistant

AMP-R
H. influenzae

- Mechanism of ampicillin resistance
 - Resistance is the result of beta-lactamase
 - Most common form of resistance
 - Beta-lactamase negative ampicillin resistant strains have been reported
 - Probably the result of alteration of PBP
 - Presently a rare occurrence
H. influenzae type B (Hib)

- Vaccine is directed at type B *H. influenzae*
 - Unknown whether vaccination with Hib vaccine will protect against other typeable or nontypeable strains of *H. influenzae*
- Vaccine has virtually wiped out cases of Hib meningitis
Moraxella catarrhalis
Beta-lactamase Positive
M. catarrhalis

- Mechanism of resistance
 - Resistance is the result of beta-lactamase production
 - Resistance is not the result of alteration of PBP’s
 - Nationally and locally virtually 100% of *M. catarrhalis* produce beta-lactamase
Atypical Respiratory Pathogens
Atypical Pathogens
(M. pneumoniae, L. pneumophila, C. pneumoniae)

- Bacterial pathogens without a cell wall
 - Cannot use beta-lactam antibiotics
- Obligate intracellular pathogen
 - Antibiotic must penetrate into the cell
 - Can use macrolides, tetracyclines, or quinolones
 - Cannot use beta-lactam antibiotic
Therapeutic Options

- **Amoxicillin or 1st Generation Cephalosporin**
 - Will not cover atypical pathogens
 - Will not cover PCN-R *S. pneumoniae*
 - + *H. influenzae* coverage
 - Requires multiple doses per day for 10-14 days
 - High dose amoxicillin therapy associated with significant diarrhea
 - Expensive
Therapeutic Options

- **TMP/SMX**
 - Will not cover atypical pathogens
 - Will not cover PCN-R *S. pneumoniae*
 - Resistance to other pathogens has grown over the years
 - BID schedule
 - Relatively inexpensive
Therapeutic Options

- Beta-lactamase inhibitors or Advanced Generation Cephalosporin
 - Will not cover atypical pathogens
 - Will not cover PCN-R *S. pneumoniae*
 - *H. influenzae* coverage
 - Convenience factor variable
 - Expensive
Therapeutic Options

- Clarithromycin/Azithromycin
 - Will cover atypical pathogens
 - Probably will not cover PCN-R
 - *S. pneumoniae* due to cross resistance
 - + *H. influenzae* coverage (Biaxin)
 - Convenience factor variable
 - Expensive (Biaxin > Zithromax)
Therapeutic Options

- Ciprofloxacin
 - Poor Streptococcal coverage
 - Generally not considered CAP agent
 - + Atypical pathogens
 - ? PCN-R *S. pneumoniae*
 - Not recommended for pediatrics
 - BID schedule
 - Expensive
Patient Compliance

- The right diagnosis, antibiotic, dose, and interval meaningless if the patient does not take the drug
- PO better than IV/IM
- QD or BID better than TID or QID
- Short course better than 10 to 14 days
Conclusions

- Patterns of resistance are evolving
- Practitioners must remain current on changing trends
- Need to maintain contemporary treatment guidelines
- Avoid antibiotic misuse
- Must strictly enforce infection control
- Need new antibiotics
- Each prescription for an antibiotic is an experiment in Darwinian theory