Overview of Bacterial Resistance

John C. Rotschafer, Pharm. D., FCCP
Professor
College of Pharmacy
University of Minnesota

Objectives

- State the 5 common methods used by bacteria to overcome antibiotic therapy & provide antibiotic-bacterial examples of each.
- Identify 2 natural advantages that bacteria possess in terms of survival.
- Identify 5 consequences of bacterial resistance.
- Define the terms plasmid, transposon, constitutive/induction, ESBL, influx, efflux, PBP, vertical/horizontal transmission, static vs cidal activity, & collateral damage

Overview

- Bacterial resistance
 - Resistance increases morbidity and mortality
 - Pathogens often resistant to multiple antibiotics
 - Results in increased length of stay in hospital and ICU
 - Increases the cost of care
 - Understanding mechanism of resistance helps identify appropriate antibiotic therapy
Antibiotic Behavior

- Bactericidal vs Bacteriostatic
- Concentration Dependent vs Independent
 - Speed & extent of bacterial kill
- Mitigating Circumstances
 - Bacterial concentration and actual bacterial burden
 - Mutational frequency
 - Single vs multiple mechanisms of action and resistance
 - Level of antibiotic exposure
 - Frequency, magnitude, and duration
 - Environment (pH, oxygen tension, etc)
 - Protein Binding
 - Blood vs site of infection concentration
 - Presence of foreign body or device

Bactericidal vs Bacteriostatic

- Definition
 - Bactericidal – Actual bacterial killing
 - MBC / MIC ≤ 4
 - Bacteriostatic – Inhibition of bacterial growth
 - MBC / MIC > 4
 - Tolerance
 - MBC / MIC ≥ 32
 - Optimal therapy for a particular pathogen does not equate to optimal therapy for all
 - Collateral damage resistance scenario
 - Resistance transfer from another vector (vanA to S. aureus)

The Bacterial Advantage

- The modern antibiotic era is ~ 65 years old while bacteria have been here for millennia
- Bacteria have the ability to adapt to the environment, bacteria are natural survivors
- Bacteria spontaneously mutate continuously looking for a selective advantage
- Bacteria have rapid growth rates & can rapidly replace the former generation.
Bacterial Resistance

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Drug must be taken into cell</td>
<td>Influx/Efflux</td>
</tr>
<tr>
<td>Drug must remain viable</td>
<td>Enzyme/Environment</td>
</tr>
<tr>
<td>Drug binds to target</td>
<td>Target alteration</td>
</tr>
<tr>
<td>Drug attack metabolic process</td>
<td>Bypasses effect using antidote</td>
</tr>
</tbody>
</table>

- Mutated bacteria can rapidly replace the former generation
- Bacteria naturally mutate or acquire resistance (plasmids)
- Mechanisms of resistance are not mutually exclusive

Mechanisms of Antibiotic Resistance

- Influx-Block Porin Channel
- Efflux- Pump
- Enzyme Inactivation
- Target Alteration
- Metabolic Bypass
- Environment Factors

D = Porin Channel
E = Penem Specific
A = Antibiotic

Mechanisms of Bacterial Resistance

- Influx Alterations
 - Porin channel modification
 - Beta-lactams
 - Fluoroquinolones
 - Aminoglycosides
 - Tetracyclines
 - Environmental changes
 - pH (ionized vs. unionized)
 - Facilitated transport
 - Anaerobic environment prevents transport (i.e., aminoglycosides)
Common Mechanisms of Bacterial Resistance

 - Enzyme is made up of amino acids
 - Altering amino acids sequence changes potency (ESBL)
 - Result of beta-lactamase
 - Open antibiotic beta-lactam ring
 - Regenerate enzyme
 - Several chromosomal and plasmid mediated enzymes
 - Richmond Sykes or Bush Type enzymes

- **Beta-lactamases**
 - Diverse group of enzymes > 300
 - Several classification schemes
 - Richmond Sykes 1976
 - Bush 1989 & 1995
 - Inactivation of antibiotic function of quality and quantity of enzyme produced
- **Extended Spectrum Beta-Lactamase**
 - Bush 2br = IRT
 - Bush 2be = ESBL
 - >120 known enzymes

Antibiotic Inactivation

- **Chromosomes**
 - Enzyme coding is intrinsic to bacteria
 - Actual enzyme expression may be:
 - Constitutive - enzyme at constant level of production
 - Inducible (Induction or Derepression) - enzyme is only expressed when a specific agent (inducer) is present
 - Certain antibiotics cause bacteria to move from a repressed state into a derepressed state
Antibiotic Inactivation

- **Plasmids**
 - Extra chromosomal pieces of DNA
 - With gram negative bacteria, can code for 4 to 5 different bacterial enzymes
 - For gram positives can code for only a couple of bacterial enzymes
 - Externally introduced
 - Promote genetic diversity
 - TEM 1, TEM 2, & SHV 1 most commonly found plasmid mediated beta-lactam enzymes

ESBL

- Mutants of TEM 1, TEM 2, or SHV 1
- Vary by 1 to 4 amino acids substitutions
- Very potent enzymes
 - Hydrolyze 3rd generation cephalosporins & aztreonam
 - Carbapenems & cephamycins not affected
 - Very difficult to detect in laboratory
 - Commonly seen with E.coli & Klebsiella spp.
- ESBL positive strains likely resistant to other antibiotics

Klebsiella spp. ESBL

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Cefotaxime</th>
<th>Ceftazidime</th>
<th>Aztreonam</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM 1</td>
<td>0.125</td>
<td>0.25</td>
<td>0.125</td>
</tr>
<tr>
<td>TEM 5</td>
<td>4.0</td>
<td>128</td>
<td>8.0</td>
</tr>
<tr>
<td>TEM 12</td>
<td>0.06</td>
<td>4.0</td>
<td>0.25</td>
</tr>
<tr>
<td>SHV 1</td>
<td>0.125</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>SHV 2</td>
<td>64</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>SHV 4</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
</tbody>
</table>

Jacoby G AAC 35:1697-1704, 1991
ESBL

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>MIC (mg/L)</th>
<th>Ceftazidime Amino Acid Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM 1</td>
<td><0.12</td>
<td>Glu Arg Glu</td>
</tr>
<tr>
<td>TEM 12</td>
<td>4-32</td>
<td>Glu Ser Glu</td>
</tr>
<tr>
<td>TEM 10</td>
<td>64</td>
<td>Glu Ser Lys</td>
</tr>
<tr>
<td>TEM 26</td>
<td>>256</td>
<td>Lys Ser Glu</td>
</tr>
</tbody>
</table>

Rice, L. Pharmacother 19:1205-1285, 1999

ESBL Testing

- Test any gram negative isolate where MIC ≥ 2 mg/L for 3rd generation cephalosporin or aztreonam
 - Cefpodoxime ≥ 8 mg/L
- Test cefotaxime or ceftazidime alone and in combination with 4 mg/L clavulanate
 - Look for ≥ 2 tube dilution change in MIC
 - ESBL Etest strip
 - Vitek ESBL card
- Inoculum effect with ESBL positive organisms
- Previous attempts to treat ESBL outbreaks with imipenem have generated imipenem resistant species
 - Pseudomonas or Acinetobacter spp.

Zone of Influence for ESBL Index Hospital

<table>
<thead>
<tr>
<th>Distance (miles)</th>
<th>Resistance %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>37</td>
</tr>
<tr>
<td>10-20</td>
<td>23</td>
</tr>
<tr>
<td>20-80</td>
<td>9</td>
</tr>
<tr>
<td>80-160</td>
<td>3</td>
</tr>
<tr>
<td>>160</td>
<td>5</td>
</tr>
</tbody>
</table>

Monnet D. Infect Cont Hosp Epidem 18:492-498, 1997
Antibiotic Inactivation

- Can be spread vertically or horizontally among bacteria
 - Resistance conveyed by
 - Chromosomal mutation
 - Spontaneous natural phenomena
 - Transduction
 - Bacterial phage introduces new DNA into cell
 - Conjugation
 - Sexual transfer of genetic material

Antibiotic Inactivation

- Target alteration
 - Examples
 - Fluoroquinolones- DNA-gyrase
 - Macrolides- 50S ribosome
 - Aminoglycosides- 30S ribosome
 - Beta-lactams- alter penicillin binding proteins (PBP)

Antibiotic Inactivation

- Active efflux
 - Ability to pump antibiotic out of bacteria
 - Prevents a critical concentration of antibiotic from being established within the bacteria
 - Example
 - Fluoroquinolones
 - Tetracyclines
Controlling Bacterial Resistance

Antibiotic Inactivation

- Metabolic bypass
 - Antibiotic interacts with metabolic pathway & blocks critical step
 - Bacteria substitute an antidote that bypasses the metabolic block
- Examples
 - TMP/SMX
 - Vancomycin

Vancomycin Resistance

Resistance requires 3–9 new genes to direct synthesis of altered wall precursor
Mechanisms of Bacterial Resistance

- Bacteria may possess multiple mechanisms of resistance simultaneously
- Mechanisms of resistance are not mutually exclusive

The Antibiotics We Use

- Overt and Covert Use of Antibiotics
 - Hospital vs. Nursing Home vs. Day Care vs. Community
 - Prophylaxis
 - Therapeutic
 - Inappropriate
 - Passed Down the Food Chain (Animal Feed)
 - Antibiotics are part of our daily living (Triclosan)
- Overuse, misuse, and/or underdosing of antibiotic can precipitate bacterial resistance
- Direct and Collateral Damage
 - Ceftazidime – ESBL
 - Cephalosporins, Vancomycin, Anaerobic Agents – VRE

Collateral Damage
Antibiotic Fragging

- Antibiotic Delivery
- Resp
- GU
- Infected Site
- GI
- Skin
Strategy to Limit Resistance

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccination</td>
<td>Rapid & Accurate Pathogen Identification</td>
</tr>
<tr>
<td>Infection Control</td>
<td>Infection Control</td>
</tr>
<tr>
<td>Formulary Selection</td>
<td>Pharmacokinetic &/or</td>
</tr>
<tr>
<td>Education</td>
<td>Pharmacodynamic dosing</td>
</tr>
<tr>
<td>Antibiotic Rotation</td>
<td>Practice Guidelines</td>
</tr>
<tr>
<td>Antibiotic Program</td>
<td>New Agents</td>
</tr>
</tbody>
</table>

Methods to Promote Optimal Utilization of Antibiotics

- Government & professional organizational programs
- Guidelines
- Antibiotic cycling or rotation
- Restricting antibiotic use
- Antibiotic order forms
- Ongoing Education
- Programs that track antibiotic usage & resistance

Influences that Increase Antibiotic Prescribing
July 1998 Survey of all primary care MD’s in Massachusetts
APUA Newsletter Vol 19 2001

- 499 usable responses out of ~6,000 questionnaires (8%)
- 80% agreed that physicians over prescribe antibiotics
- Factor % MD’s Factor influenced Rx
- Purulent Discharge 64%
- Dx Uncertainty 62%
- Patient request 59%
- Patient satisfaction 48%
- Fever 47%
- Tx Uncertainty 36%
- Payer Policy-Formulary 28%
- Time Pressure 26%
- Return visit cost 20%
- Litigation concern 19%
- Payer policy-QA 13%
- Drug promotion 7%
- Resistance concern 5%
- Cost 2%
Preventing Bacterial Resistance: Underdosing

- Examined relationship between bacterial resistance, kinetics, & MIC in 4 LRTI trials
- N=107 patients, 128 pathogens, & 5 antibiotic regimens
- 32/128 (25%) initially susceptible pathogens developed resistance during therapy
- AUC/MIC ratio < 100 risk factor for developing resistance during therapy
- Underdosing would appear to be a significant risk factor for the development of resistance

Antibiotic Control Program Induced Pseudo-outbreak of Infections
Calfee, D.P. Abstract # 19 IDSA 2000 New Orleans

- Number of nosocomial infections rose after introduction of antibiotic control program
- No specific pathogen identified
- Patient acuity index unchanged
- Mortality rate actually decreased
- Physicians changed diagnostic and prescribing practices to comply with antibiotic program
 - “Squeezing the balloon” syndrome

Antibiotic Rotation in Neonatal ICU

- Monthly rotation of gentamicin, P/T, & ceftazidime vs unrestricted antibiotic use in side by side ICU’s for 1 yr
- Pharyngeal & rectal samples 3X/week
- PFGE for genetic discordance
- N= 1062 infants, 10.7% (cycled group) vs 7.7% (control group) colonized with resistant gram negative pathogen
- Incidence of nosocomial infection & mortality similar among the two groups
- Rotation of antibiotics had no detectable effect
Resistant *A. baumannii* in ICU

Weingarten, CM Pharmacother 19:1080-1085, 1999

<table>
<thead>
<tr>
<th></th>
<th>Infected</th>
<th>Match</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>51 yrs</td>
<td>50 yrs</td>
<td>NS</td>
</tr>
<tr>
<td>Apache II</td>
<td>16</td>
<td>11</td>
<td><0.001</td>
</tr>
<tr>
<td>Mortality</td>
<td>34%</td>
<td>18%</td>
<td><0.01</td>
</tr>
<tr>
<td>LOS</td>
<td>51 days</td>
<td>19 days</td>
<td><0.001</td>
</tr>
<tr>
<td>Phar cost</td>
<td>$19K</td>
<td>$3K</td>
<td><0.001</td>
</tr>
<tr>
<td>Hosp cost</td>
<td>$128K</td>
<td>$31K</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Cost of Nosocomial Infections

Roberts, R SHEA 2001

- Retrospective cohort study of patients at Cook County with hospital acquired infections (HAI-CDC criteria)
- Randomly selected patients from 1998 discharge database with >5 ICD-9 diagnoses
- Severity of illness measured using Apache III scores
- Costs calculated from hospital perspective
- 193 (164 medical & 29 surgical) patients (41/193 with HAI)
 - Medicine average cost of hospitalization with HAI $24,762 vs. $6,202 without
 - Surgical average cost of hospitalization with HAI $52,422 vs. $20,823 without
 - Confounding variable analysis showed suspected HAI added $13,236 (SE $3,146) & documented HAI added $18,223 (SE $2,225)

Conclusions

Goal:
- Promote appropriate use of antibiotics
- Consider the potential of new antibiotic to induce bacterial resistance in formulary evaluations
- Promote appropriate pharmacokinetic & pharmacodynamic concepts when dosing antibiotics
- Develop programs to monitor use of antibiotics & resistance within the hospital & benchmark data
- Communicate data among colleagues
- While not primary function can help promote appropriate and aggressive use of infection control measures
Stuart Smalley Closing Thoughts

- Remember:
 - Every time you use an antibiotic, you are conducting your own experiment in Darwinian theory!
 - Wash your hands, there are some bad bugs out there!