Skin and Soft Tissue Infections

Elizabeth D. Hermsen, Pharm.D.
Infectious Diseases Research Fellow
University of Minnesota
College of Pharmacy

Objectives

- Discuss three classification variables involved in the evaluation of skin and soft tissue infections (SSTI's).
- Identify five host defense mechanisms that may prevent SSTI's.
- List three predisposing factors for SSTI's.
- Differentiate between the various SSTI's
 - Identify pathogens commonly encountered with each type
 - Suggest antimicrobial therapy for common SSTI's

Introduction

- SSTI's are common and vary widely in severity
- Multiple classification systems
 - Uncomplicated vs. complicated
 - Single pathogen vs. mixed infection
 - Acute vs. chronic
 - Local vs. diffuse
 - Systemic signs
- Important to have an idea of what the infecting organism is appropriate empiric antimicrobial therapy when necessary
Host Defenses

- Multi-layered construction of skin
 - Stratum corneum, epidermis, dermis, subcutaneous fat, superficial fascia
- Skin is dry
- Limited epithelial cell adherence by pathogens
- Intact stratum corneum
- Low skin pH
- Host immune system
- Resident skin flora

Predisposing Factors

- Systemic
 - Peripheral neuropathy, vascular insufficiency
 - Increased age, smoking, poor nutrition, obesity
 - Comorbidities
 - Immunosuppression
- Local
 - Type, site, size, and depth of wound
 - Edema
 - Tissue ischemia
 - Excessive moisture

Classification of SSTI's

Primary (Uncomplicated)
- Folliculitis, furuncles, carbuncles
- Erysipelas
- Impetigo
- Cellulitis
- Necrotizing fasciitis

Secondary (Complicated)
- Diabetic foot infections
- Pressure sores
- Bite wounds
- Burn wounds
- Cellulitis
- Necrotizing fasciitis

Importance of Etiology
- Single pathogen
 - Usually uncomplicated/primary
 - Commonly gram-positive
- Mixed infection
 - Aerobes – usually open wounds
 - Aerobes and anaerobes –
 - Most likely deeper infections
 - Microbial synergy – severity

Bacterial Commonly Associated with SSTI’s

Gram-positive
- S. aureus, S. epidermidis
- Streptococci spp.
- Enterococcus spp.

Gram-negative
- E. coli, Klebsiella, Proteus
- P. aeruginosa
- Pasteurella multocida

Anaerobes
- Eikenella corrodens
- Other oral anaerobes
- Clostridium spp.
- B. fragilis
Acute vs. Chronic

Acute
• External damage to intact skin
 – Cuts
 – Trauma
 – Bites
 – Burns
 – Surgical wounds

Chronic
• Endogenous mechanism and predisposing conditions
 – Leg/foot ulcers
 – Pressure sores

Folliculitis

• Pathogenesis
 – Superficial infection around hair follicles
 – Most common on hairy areas of the body
 – Can occur with insufficient chlorine levels in hot tubs/swimming pools

• Clinical findings
 – Pruritic, erythematous papules
 – ~48 hours after exposure
 – Evolve to pustules
 – Heals in several days

Folliculitis (cont.)

• Etiology
 – *S. aureus*
 – *P. aeruginosa* (hot tub)

• Treatment
 – Warm compress
 – May need topical antimicrobials (clindamycin, erythromycin)
Furuncles and Carbuncles

• Pathogenesis
 – Furuncles
 • Extension of folliculitis – inflammation involves dermis
 • Usually on hairy areas subject to friction and moisture (perspiration)
 – Carbuncles
 • Extension of furuncle – extends to subcutaneous tissue

• Clinical Findings
 – Furuncles
 • Firm, tender, red nodule
 • Painful, pustulant
 • Discrete lesions
 – Carbuncles
 • Similar to furuncle, but coalesced lesions
 • Fever, chills, malaise
 • May spread to other tissues

Furuncles and Carbuncles (cont.)

• Etiology
 – S. aureus

• Treatment
 – Small furuncles -- moist heat
 – Large furuncles/ Carbuncles
 • Dicloxacillin 250mg po QID x 10d
 • PCN allergy – clindamycin 150-300mg po QID or erythromycin 250-500mg po QID x 10d
 • Surgical incision for non-draining lesions

Erysipelas

• Pathogenesis
 – Superficial cellulitis
 – Bacteria gain access via small break in skin (insect bite, abrasion)

• Clinical Findings
 – Most common in infants, young children, and elderly
 – Most common on lower extremities
 – Bright red, edematous, indurated, painful
 – Sharply surrounded by a raised border
 – Fever and ↑ WBC common
Erysipelas (cont.)

- **Etiology**
 - *S. pyogenes*
 - Group B streptococci in newborns
 - Rarely *S. aureus*

Erysipelas (cont.)

- **Treatment**
 - Mild to moderate
 - procaine PCN G 600,000 U IM BID
 - PCN VK 250-500mg po QID x 10d
 - PCN allergy – erythromycin 250-500mg po QID x 10d
 - Serious
 - Aqueous PCN G 2-8 MU qd IV
 - Infection may appear to worsen shortly after treatment

Impetigo

- **Pathogenesis**
 - Most common in hot, humid weather
 - Bacteria gain access via minor trauma (insect bites)
 - Most common in children
 - Highly communicable – spread through close contact/poor hygiene

- **Clinical Findings**
 - Small, fluid-filled vesicles develop into pus-filled blisters
 - Purulent discharge dries to form "honey crusts"
 - Pruritis is common
Impetigo (cont.)

• Etiology
 – *S. aureus*
 – *S. pyogenes*

Impetigo (cont.)

• Treatment (7-10 days)
 – Warm water soak
 – PenVK 250-500mg po QID
 – Cephalexin 500mg po QID
 – Cefaclor 500mg po TID
 – Benzathine PCN G 1.2 MU IM x 1
 – PCN allergy – erythromycin 250-500mg po QID
 – Prophylaxis – mupirocin ointment TID x 7d

Cellulitis

• Pathogenesis
 – Acute; spreads to involve subcutaneous tissues
 – Previous trauma (laceration, puncture) or other skin lesion (furuncle, ulceration) predisposes to cellulitis
 – Propensity to spread to bloodstream
 • Bacteremia present in ~30% cases
 – Other complications
 • Local abscess and osteomyelitis
Cellulitis (cont.)

• Clinical Findings
 – Can occur within hours or days of initial trauma
 – Local tenderness, pain, erythema,
 • Rapidly intensifies
 – Fever, chills, malaise with severe cellulitis
 – Feels warm to touch, appears swollen, poorly demarcated
 – Regional lymphadenopathy
 – Cultures usually not positive (15-25% positive)

Cellulitis (cont.)

• Reasons to consider hospital admission
 – Pre-existing condition
 – Extensive or rapidly progressing
 – Presence of blisters, necrosis, or muscle involvement
 – High fever, rigors
 – Hypotension
 – Bite wound
 – Positive blood cultures (bacteremia)

Cellulitis (cont.)

• Etiology
 – *S. aureus*
 – *S. pyogenes*
 – Gram-negatives possible – consider in immunocompromised patients or patients who have failed previous therapy
 – IVDU – *S. aureus, S. pyogenes* most common, but also anaerobes and rarely, *Candida*
 – Diabetics – mixed aerobic/anaerobic flora, may progress to areas of gangrene
Cellulitis (cont.)

Treatment (usually 7-10 days)
- **Suspect S. aureus or S. pyogenes**
 - **Mild**
 - Dicloxacillin 250-500mg po QID
 - Cefadroxil 500mg po BID
 - Cephalexin 250-500mg po QID
 - **Moderate-severe**
 - Nafcillin or oxacillin 1-2g iv q4-6h
 - Cefazolin 1-2g iv q8h

Treatment (cont.)
- **Documented streptococcal infection**
 - **Mild**
 - PenVK 500mg po QID or procaine PCN G 600,000 U IM q8-12h
 - **Moderate-severe**
 - Aqueous PCN G 1-2 MU iv q4-6h

MRSA infection
- Vancomycin 1g iv q24h
- Linezolid 600mg po BID
- Synercid 7.5mg/kg q8-12h
- Daptomycin 4mg/kg iv q24h
Cellulitis (cont.)

Treatment (cont.)
• Gram-negative infection
 – Mild
 • Cefadroxil 500mg po TID
 • Cefuroxime 500mg po BiD
 – Moderate-severe
 • Aminoglycoside
 • Third generation cephalosporin (ceftriaxone, cefotaxime)
 • PCN allergy – use FQ (cipro, levofloxacin, gatifloxacin, or moxifloxacin)

Cellulitis (cont.)

Treatment
• Mixed aerobic infection
 – Aminoglycoside plus PCN G 1-2 MU or nafcillin 1-2g iv q4-6h
 – Ceftazidime and fluoroquinolones also effective

Cellulitis (cont.)

Treatment (cont.)
• Mixed aerobic/anaerobic infection (10-14d)
 – Mild
 • Augmentin 875mg po BID
 • FQ (levofloxacin 500-750mg po qd; ciprofloxacin 400mg po BID) plus clindamycin 300-600mg po TID or metronidazole 500mg po TID
 – Moderate-severe
 • Aminoglycoside plus clindamycin 600-800mg iv q8h or metronidazole 500mg iv q8h
 • Cefotaxim 1-2g iv q8h
 • Cefuroxime 1-2g iv q8h
 • Imipenem 500mg iv q6-8h
 • Piperacillin/tazobactam 4.5g iv q8h
Necrotizing SSTI’s

• Pathogenesis
 – Can occur anywhere, but most frequently in abdomen, perineum, and lower extremities
 – Predisposing factors common – diabetes, local trauma/infection, recent surgery
 – Necrotizing fasciitis – rare, severe infection of subcutaneous tissue; Type I and II
 – Clostridial myonecrosis (gas gangrene) – severe infection involving skeletal muscle

Necrotizing SSTI’s (cont.)

• Clinical Findings
 – Necrotizing fasciitis
 • Red, warm, shiny, tender, painful
 • Diffuse swelling = d-formation of fluid-filled blisters
 • High mortality (20-50%)
 • Type I – slower spread of infection, skin may be spared
 • Type II – rapidly extending necrosis of subcutaneous tissues and skin, gangrene, severe local pain, highly associated with early onset shock and organ failure
 – Clostridial myonecrosis
 • Gas production, muscle necrosis, rapid progression (often within a few hours)
 • May have mental confusion and tachycardia

Necrotizing SSTI’s (cont.)

• Etiology
 – Necrotizing fasciitis
 • Type I – mixture of anaerobes (Bacteroides, Peptostreptococcus) and facultative bacteria (streptococci, Enterobacteriaceae) – synergy
 • Type II – S. pyogenes (“flesh-eating bacteria”)
 – Clostridial myonecrosis
 • Clostridium perfringens
Necrotizing SSTI’s (cont.)

- Treatment
 - Immediate, aggressive surgical debridement
 - Same as severe mixed infection cellulitis with anaerobes
 - If Type II necrotizing fasciitis diagnosed \(\rightarrow\) penicillin + clindamycin
 - Clostridial myonecrosis \(\rightarrow\) penicillin + clindamycin

Bite Wounds

- Pathogenesis
 - Estimated that 50% of U.S. will be bitten during lifetime
 - Dog bites
 - Most common bite; usually < 20y.o. and male; 70% to extremities, occasionally facial (usually in young children)
 - Cat bites
 - Second most common; usually on upper extremities, mostly women, higher infection rates (30-50%) than dog bites
 - Human bites
 - Third most common; bites from teeth or blows to the mouth; more serious; higher rate of infection (50%); usually to the hand, clenched-fist very serious

Bite Wounds (cont.)

- Clinical Findings
 - Two groups
 - Present 8-12 hours after bite – general wound care, repair of tears, rabies and/or tetanus treatment
 - Present > 12 hours after bite – clinical signs of an established infection (pain, purulent discharge, swelling)
 - Human bite patients often complain of decreased range of motion
Bite Wounds (cont.)

• Etiology
 – Dog and cat bites
 • Pasteurella multocida
 • Aerobes – Streptococci, staphylococci, Moraxella, Neisseria
 • Anaerobes – Fusobacterium, Bacteroides, Porphyromonas, Prevotella
 – Human bites
 • Aerobes – S. aureus, streptococci, Corynebacterium spp., Eikenella corrodens
 • Anaerobes – B. fragilis, Peptostreptococcus spp.

Bite Wounds (cont.)

• Treatment
 – Dog and cat bites (10-14 days)
 • Irrigation w/ copious amounts of sterile NS
 • Immobilization and elevation of injured area
 – Infection w/in first 24h → P. multocida
 » Pen/VK 500mg po QID or amoxicillin 500mg po TID or if severe, PCN G 1.2 MU IV q4-6h
 » PCN allergy – tetracycline 500mg po QID
 – Infection 36-48h after bite → staph or strep
 » Dicloxacillin 250-500mg po TID or cefuroxime 500mg po BiD

Bite Wounds (cont.)

• Treatment
 – Dog and cat bites (cont.)
 • Prophylaxis for non-infected wounds is controversial
 – Need broad spectrum to cover normal flora of animal mouth and normal flora of human skin
 – Recommend short course therapy (3-5 days)
 • Tetanus toxoid to those requiring booster (>5-7 years since immunization)
 • Consider rabies with wild/stray animals
Bite Wounds (cont.)

• Treatment
 – Human bites
 • Aggressive irrigation, surgical debridement, immobilization
 • Primary closure usually not recommended
 • Tetanus toxoid may be necessary
 • Consider viral disease of biter (HIV?)
 • Prophylaxis of non-infected wound IS recommended (3-5 days)
 – Dicloxacillin 250-500mg po QID plus PenVK 250-500mg po QID

Bite Wounds (cont.)

• Treatment
 – Human bites (cont.) => infected wounds (10-14 days)
 • Pending culture results
 – Dicloxacillin 250-500mg po QID plus Augmentin 875/125mg po BID
 – PCN allergy – clindamycin plus fluoroquinolone or TMP-SMZ
 – If severe infection or clenched-fist injury => IV antibiotics

Burn Wounds

• Pathogenesis
 – Progressive tissue necrosis and limited defenses allow for pathogen invasion
 – Major disruption of homeostasis
 – Decreased body temperature due to heat loss may lead to progressive deterioration
 – Goal of early burn therapy is to ensure adequate delivery of oxygen and nutrients to the wound
 – Pts. with significant burns (>40%) are predisposed to infection due to nonspecific humoral and cellular immune suppression
Burn Wounds (cont.)

- Etiology
 - *S. aureus*, *S. epidermidis*
 - Various streptococci
 - E. cloacae
 - E. coli
 - *P. aeruginosa*
 - Other gram-negative bacilli
 - Candida spp.
 - Aspergillus spp.

- Treatment
 - Surgical exploration and debridement may be needed based on severity and extent of burn
 - Topical – silver sulfadiazine, silver nitrate, sulfamylon
 - Oxacillin 500-1000mg po QID
 - Nafcillin 1g IV q4h
 - MRSA – vancomycin 1g IV q12h; Synercid, linezolid, and daptomycin are also options
 - Sepsis – vancomycin 1g IV q12h plus amikacin 10mg/kg LD, then 7.5mg/kg IV q12h plus piperacillin 4g IV q4h