Surgical Antibiotic Prophylaxis

Steve Johnson, PharmD, BCPS
Prime Therapeutics, Inc

Objectives

• Discuss antibiotic use as prophylaxis vs presumptive therapy vs treatment of infections.
• Discuss risk factors for developing a surgical wound infection.
 – Surgical wound classification and related risk of infection
• Discuss selection and administration of antibiotic therapy for surgical procedures.
• Discuss duration of antibiotic therapy for prophylaxis

Introduction

• Approximately 46 million surgical procedures are performed per year in the United States.
• Surgical site infections develop in 3-6% of patients
• > 2 million surgical wound infections per year
• 16% of all nosocomial infections are related to surgical wound infections
 – Several of these infections are preventable
Introduction

- Surgical wound infections increase health care costs by 5-10 billion dollars per year
 - Prolonged hospitalization stay
 - Increased morbidity/mortality
- Prophylactic antibiotics have been shown to decrease the risk of infection for many procedures and represents an important component of optimal management of the surgical patient.
 - Surgical antibiotic prophylaxis is well established and common practice.

Introduction

- Controversies regarding prophylactic antibiotic use include:
 - Selection of antibiotic therapy
 - Duration of antibiotic therapy
 - Development of bacterial resistance
 - Role of newly developed antibiotics
- Common factors resulting in failure of prophylaxis
 - Inadequate timing of antibiotic
 - Failure to re-dose antibiotic for prolonged surgical procedures

Definitions

- Prophylaxis:
 - Administration of an antibiotic prior to contamination of previously sterile tissues or fluids.
- Presumptive therapy:
 - Administration of an antibiotic when there is a strong possibility but unproven established infection
- Treatment:
 - Administration of an antibiotic when an established infection has been identified.
Definitions

• Surgical wound infections (SWI):
 – Infections identified by purulent or culture positive drainage isolated from any structure above the fascia in proximity to the surgical wound
 – Deep infections are characterized by purulent drainage from subfascial drains, wound dehiscence, or abscess formation and involve adjacent sites manipulated during surgery.
 – Wound Dehiscence
 – Breakdown of the surgical wound

Wound Classifications

• Identifying patient risk
 – Even with adequate sterile techniques and potent antibiotics wound infections develop in 2-9% of all surgical procedures
 – Bacteria are found in 90% of surgical incisions despite all aseptic precautions.
 – The National Research Council (NRC) stratifies infection risk by surgical procedure
 • Clean
 • Clean-contaminated
 • Contaminated
 • Dirty
Wound Classifications

Clean
- SWI risk (<2%)
- Elective surgery
- No acute inflammation or transection of gastrointestinal (GI) tract, oropharyngeal, genitourinary (GU), biliary or tracheobronchial tracts
- No break in aseptic technique
- Examples include:
 - Craniotomy, orthopedic surgery, cardiothoracic and vascular surgery
- Antibiotic use is controversial but routinely used

Clean-contaminated
- SWI risk (2-10%)
- Urgent or emergent case that is otherwise clean, controlled opening of GI, GU, oropharyngeal, biliary, or tracheobronchial tracts,
- Minimal spillage and/or minor aseptic technique break
- Examples include:
 - Invasive head and neck surgery, cholecystectomy, urologic procedure, hysterectomy, orthopedic surgery with prosthesis
- Antibiotics are administered for prophylaxis

Contaminated
- SWI risk (10-20%)
- Any procedure in which there is gross soiling of the operative field during procedure, as well as surgery of open traumatic wounds (< 4 hours old).
- Examples include:
 - Colorectal surgery with spillage, biliary or GU tract surgery in the presence of infected bile or urine and clean or clean-contaminated procedures marred by a major break in technique.
- Antibiotics are administered for prophylaxis
Wound Classifications

- Dirty
 - SWI risk (>30%)
 - Purulence or abscess present, preoperative perforation of GI, oropharyngeal, biliary, or tracheobronchial tracts, penetrating trauma > 4 hours old.
 - Examples include:
 - Perforated appendicitis with abscess formation
 - Antibiotics are utilized for treatment, therefore use is not considered prophylaxis

Surgical Wound Infections

Identified Risk Factors

- Incidence of a SWI depends on numerous factors specific to either the procedure itself or the individual patient.
 - Type of surgical procedure and bacterial load encountered
 - Underlying medical condition of the patient
 - Surgical procedure
 - Technique
 - Duration
 - Patient preparation
 - Equipment preparation
Patient Risk Factors

• Systemic Factors
 – Diabetes
 – Remote infections
 – Corticosteroids
 – Obesity
 – Extreme of age
 – Malnutrition
 – Massive transfusion
 – Multiple preoperative comorbid medical diagnosis (≥3)
 – ASA class 3, 4 or 5

ASA Risk Factors

• Local factors
 – Foreign body
 – Electrocautery
 – Injection with epinephrine
 – Wound drains
 – Hair removal with razor
 – Previous irradiation of site
Risk Factors

- Surgery-related factors
 - Type of procedure, site of surgery, emergent surgery
 - Duration of surgery (>60-120 min)
 - Previous surgery
 - Timing of antibiotic administration
 - Placement of foreign body
 - Hip/knee replacement, heart valve insertion, shunt insertion
 - Hypotension, hypoxia, dehydration, hypothermia

Risk Factors

- Surgery related factors
 - Patient preparation
 - Shaving the operating site
 - Preparation of operating site
 - Draping the patient
 - Surgeon preparation
 - Handwashing
 - Skin antiseptics
 - Gloving

Risk Factors

- Wound-related factors
 - Magnitude of tissue trauma and devitalization
 - Blood loss, hematoma
 - Wound classification
 - Potential bacterial contamination
 - Presence of drains, packs, drapes
 - Ischemia
 - Wound leakage
Antibiotic Use

### Procedure	NNT
Open Heart Surgery | 14
Colorectal Surgery | 5
Head & Neck-Clean | NA
Head & Neck-Contaminated | 3
Total Hip replacement | 42
Hip Fracture Repair | 58

Antibiotic Selection

- Characteristics of an optimal antibiotic for surgical prophylaxis
 - Effective against suspected pathogens
 - Does not induce bacterial resistance
 - Effective tissue penetration
 - Minimal toxicity
 - Minimal side effects
 - Long half-life
 - Cost effective

Antibiotic Use

- Appropriate antibiotic use for prevention of SWI includes the following:
 - Appropriate timing of administered agents and repeated dosing based on length of procedure and antibiotic half-life
 - Consider re-dosing if procedure > 4 hours
 - Appropriate selection based on procedure performed
 - Appropriate duration to avoid infection and decrease potential for development of resistance
Antibiotic Use

- Antibiotic selection
 - Must be effective against organisms most likely to be encountered
 - Endogenous organisms related to type of surgical procedure performed
 - Exogenous organisms introduced secondary to poor surgical technique
 - Must provide adequate tissue penetration for effective concentrations
 - Avoid using broad spectrum agents when unnecessary
 - Widespread use facilitates development of resistance
 - 3rd generation cephalosporins have no role in prophylaxis

Likely Pathogens

- Head & Neck Surgery
 - *S. aureus, Streptococci*
- Skin
 - *S. aureus, S. epidermidis*
- Neurosurgery
 - *S. aureus, S. epidermidis*
- Cardiac & Thoracic Surgery
 - *S. aureus, S. epidermidis*

Likely Pathogens

- Gastroduodenal
 - Gram-positive cocci, enteric gram-negative bacilli
- Colorectal
 - Enteric gram-negative bacilli, anaerobes
- Gynecologic and obstetric
 - Enteric gram-negative bacilli, anaerobes, group B streptococcus
- Biliary
 - Enteric gram-negative bacilli
Antibiotic Selection

• Cefazolin is the most common agent utilized when skin flora is the source of contamination
 – All clean procedures
 • Cardiothoracic surgeries
 • Neurosurgical procedures
 • Orthopedic surgery
 • Vascular surgery
 – Several clean/contaminated procedures
 • Controlled opening of GI tract
 • Head and neck surgery

Antibiotic Selection

• Vancomycin
 – Utilized as prophylaxis in institutions in which methicillin resistant S. aureus (MRSA) and S. epidermidis (MRSE) are a frequent cause of postoperative wound infection
 – Utilized in patients with documented allergies to Penicillins and cephalosporins
 – Increased empiric use likely contributes to the development of vancomycin resistant enterococcus (VRE)

Antibiotic Selection

• Surgical procedures which enter the gastrointestinal, oropharyngeal, genitourinary, biliary, or tracheobronchial tracts and result in spillage of bacteria require increased gram negative and anaerobic coverage.
 – Cefoxitin or cefotetan alone
 – Clindamycin with aminoglycoside
 – Metronidazole with cefazolin
 – Broad spectrum agents are frequently utilized for prophylaxis as monotherapy
 • Unasyn, Timentin, Zosyn, Primaxin, Merrem
Antibiotic Selection

• Dirty procedures
 – Patient already has an established infection and requires a surgical procedure that is often times emergent.
 – Therapeutic course of antibiotics is required and is no longer considered prophylaxis
 – Ruptured appendix
 • Significant bacterial spillage results in an established intra-abdominal infection
 • Surgery required to remove remains of appendix
 – Requires broad spectrum activity
 • Unasyn, Timentin, Zosyn, Merrem, Primaxin

Antibiotic Selection

• Bacterial counts in the gastrointestinal tract vary depending on location
 – Esophagus and stomach
 • Normally <1000 organism/ml
 – Duodenum and jejunum
 • 100-10,000 organisms/ml
 – Ileum
 • 1-10 million organisms/ml
 – Colon
 • 2/3 dry fecal matter is bacteria (400-500 different species)

Antibiotic Use

• Oral prophylactic regimen to decrease bacterial colonization for elective colorectal surgery.
 – Mechanical bowel preparation
 • Use of Go-Lytely
 – Oral antibiotics
 • Erythromycin base and neomycin 1gm PO @ 1pm, 2pm and 11pm (for an 8 am surgery or 19, 18 and 9 hours preop
 – This regimen in addition to IV antibiotics (cefotixin or cefotetan) further reduces risk of post-operative infection
Antibiotic Use

• Timing of antibiotic administration
 – It is clear that antimicrobial prophylaxis is effective when administered prior to the first incision.
 • Antibiotic must be present in adequate concentrations in the tissues when bacterial contamination occurs.
 • Administration within 30-60 minutes of incision
 – Adequate antibiotic concentrations must be maintained throughout the surgical procedure
 • Dependent upon the length of surgery and antibiotic half-life
 • Re-dose antibiotic if surgical procedure exceeds 2 half-lives of drug utilized

Antibiotic Use

• Antibiotic duration
 – Few good clinical trials support the current guidelines related to the duration of prophylaxis
 – The duration of antibiotics should not exceed 48 hours
 – Clean surgery procedures, a single dose is generally appropriate
 – For clean-contaminated and contaminated procedures 24 hours duration is most commonly utilized and recommended

Endocarditis Prophylaxis

• Patients with underlying structural cardiac defects are at risk for developing endocarditis and antibiotic prophylaxis is recommended when bacteremia may occur during specific procedures
 – Presence of prosthetic cardiac valves
 – Previous bacterial endocarditis
 – Congenital cardiac malformations
 – Acquired valvular dysfunction (Rheumatic heart disease)
 – Mitral valve prolapse with regurgitation
Endocarditis Prophylaxis

- Procedures resulting in bacteremia increasing at risk patients for development of endocarditis
 - Dental and oral procedures
 - procedures likely to result in bleeding
 - Oral antibiotic regimens recommended
 - Amoxicillin 2 gm 1 hr before procedure, children = 50mg/kg
 - PCN allergic Clindamycin 600 mg (children 20 mg/kg), cephalaxin 2 gm (children 50 mg/kg), or azithromycin/clarithromycin 500 mg (children 15 mg/kg) 1 hr before procedure
 - Respiratory, GI and/or GU tract procedures

Summary

- Surgical prophylaxis can significantly reduce the incidence of post-operative wound infections
- Several appropriate antibiotics available for use
 - Cefazolin remains the most common agent used for prophylaxis
Summary

• Several risk factors contribute to wound infection
 – Patient related factors
 – Surgery related factors
 – Wound related factors
• Antibiotic use
 – Effective against suspected pathogens
 – Effective tissue penetration
 – Minimal toxicity

Summary

• Appropriate timing of administered antibiotics
 – Must be given 30-60 minutes before incision
 – Repeat dose if procedure is longer than two half-lives of antibiotic utilized
 • Rule of thumb = 4 hours
• Duration of use
 – Controversial
 – Does not need to be > 48 hours
 – 1 preop does utilized for clean procedures
 – 24 hours duration following procedure is most commonly utilized