Bioterrorism

John C. Rotschafer, Pharm. D.
Professor
College of Pharmacy
University of Minnesota
Overview

- Focus will be on biologic agents
- Discuss available prophylaxis & therapeutic measures
- Look at our state of preparedness on a local, state, & national level
- Consider measures for your own personal safety & that of your family
Overview

- **Terrorism (Code of Federal Regulations)**
 - The unlawful use of force and violence against persons or property to intimidate or coerce a government, the civilian population, or any segment thereof, in furtherance of political or social objectives

- **Bioterrorism**
 - Use of biological agents to intentionally produce disease or intoxication in susceptible populations to meet terrorist’s aims.

icanPREVENT webpage 2001
3 Critical Elements for Bioterrorism

- **Perpetrators**
 - State sponsored
 - Insurgent rebels
 - Doomsday/cult-type groups
 - Nonaligned terrorists
 - Splinter groups
 - Lone offenders

- **Biologic Agent**
 - >12 nations either have or are pursuing programs to develop biologic weapons
 - Reported loss of biologic agents from former Soviet Union

- **Technical means to disseminate agent**

 Osterholm, M. *Living Terrors* 2001
Logistics for Biologic Attack
Osterhom, M. Living Terrors 2001

- Variable access to biologic agents
 - Up until recently *B. anthracis* could be obtained from reference collections
 - Requires some technical know how and equipment but nothing out of the ordinary

- Methods to disperse agents generally available
 - Commercial products available that disperse small particles (≤10 microns)

- Likely a silent attack requiring several days before being detected
 - Expect unusual means of deployment
Biologic Agent Properties

- High infectivity
 - Small dose required to produce disease
 - Spread person to person for secondary effect
- Either fatal or highly incapacitating
- Can be dispersed and stable to environment once released
- No effective prophylactic or treatment measures
 - Potentially could genetically alter agent for this effect
Soviet Program

- Between 1972 & 1992 Soviet launched a full scale effort to generate biologic weapons
 - Biopreparat guise was as a pharmaceutical company
 - ~40 different facilities
 - Could produce 2 tons of anthrax spores / day

- At the program’s peak ≥ 30,000 people worked full time on this program

- Parts of program re-enacted in Iran, Iraq, & North Korea
Category A Agents

Agents that can:
- Easily disseminated or transmitted from person to person
- Causes high mortality & potential for major public health impact
- Could cause panic and social disruption
- Requires special action for public health preparedness

MMWR April 21, 2000
Class A Agents

- Variola major (Smallpox)
- *Bacillus anthracis* (Anthrax)
- *Yersina pestis* (Plaque)
- *Clostridium botulinum* toxin (Botulism)
- *Francisella tularensis* (Tularemia)
- Filioviruses
 - Ebola (Ebola hemorrhagic fever)
 - Marburg (Marburg hemorrhagic fever)
- Arenaviruses
 - Lassa (Lassa fever)
 - Junin (Argentine hemorrhagic fever)

MMWR April 21, 2000
Category B Agents

Agents that can:

– Moderately easily to disseminate
– Causes moderate mortality & low mortality
– Requires special enhancements of CDC’s diagnostic capacity and disease surveillance

MMWR April 21, 2000
Class B Agents

- *Coxiella burnetii* (Q Fever)
- *Brucella spp.* (Brucellosis)
- *Burkholderia mallei* (Glanders)
- Alphaviruses
 - Venezuelan encephalomyelitis
 - Eastern & Western encephalomyelitis
- Ricin toxin (castor beans)
- Epsilon toxin from *Clostridium perfringens*
- *Staphylococcus* enterotoxin B

MMWR April 21, 2000
Class B Agents Spread by Food and Water

- Salmonella spp.
- Shigella dysenteriae
- E. coli (O157:H7)
- Vibrio cholerae
- Cryptosporidium parvum
Category C Agents

Agents:
- Availability
- Ease of production and dissemination
- Potential for high morbidity and mortality and major health impact
Class C Agents

- Nipah virus
- Hantaviruses
- Tickborne hemorrhagic fever viruses
- Tickborne encephalitis viruses
- Yellow fever
- Multidrug-resistant tuberculosis

MMWR April 21, 2000
Anthrax (*Bacillus anthracis*)

- Routes of transmission: skin, GI tract, and inhalation of spores
 - Not spread person to person
- Most cases will occur in first two weeks of exposure but additional cases will present over next month *(Sverdlovsk, USSR)*
- Initial symptoms that of a cold or flu then abruptly turn to respiratory distress
 - Dyspnea and chest discomfort common
 - Rhinorrhea uncommon
- Untreated disease is ~90% fatal
 - Mediastinal widening & meningitis ~50%
 - High probability of bacteremia

Anthrax (*Bacillus anthracis*)

- Most countries attempting a biologic weapons program had or have anthrax in their arsenal (Vollum or Ames strain)
- To weaponize, product must be milled (1-5 micron size) & overcome electrostatic forces
 - Microencapsulation or surfactants (bentonite)
 - Infected dose data likely inaccurate with new forms
 - Aerial application depending on weather conditions in metro area could kill 100-400K or 1-3M people

- Pathogen attacks monocyte
 - Protective antigen with lethal factor & edema factor
 - Toxin causes release of IL-1beta & TNF-alpha
Shopping Mall Scenario
Osterholm, M.

- Anthrax spores aerosolized into ventilation system
 - Of 10,000 people present 9,000 exposed
 - Attack announced 24 hours later
- 90% of those exposed are started on antibiotic by the end of day 2
- 4950 hospitalized
 - 2925 require ICU
 • 2601 require ventilator
 - 855 deaths
In-vitro Activity of Daptomycin, Sparfloxacin, Quinupristin/Dalfopristin & Other Antibiotics against *B. anthracis* Heine, H.S. ICAAC 2000-1

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MIC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>1 - 4</td>
</tr>
<tr>
<td>Netilmicin</td>
<td>2 - 4</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>2 - 8</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.5 - 1</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.12 - 2</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>0.5 - 2</td>
</tr>
<tr>
<td>Sparfloxacin</td>
<td>0.25 - 4</td>
</tr>
<tr>
<td>Penicillin</td>
<td>2 - 64</td>
</tr>
<tr>
<td>Amoxicillin/clav</td>
<td>0.5 - 8</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>16 - >64</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>2 - 4</td>
</tr>
<tr>
<td>Doxycycline</td>
<td><0.03 - 0.25</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.12 - 0.25</td>
</tr>
<tr>
<td>Quinupristin/dalfopristin</td>
<td>0.5 - 1</td>
</tr>
</tbody>
</table>
Anthrax Adjunct Therapy

- **Newer fluoroquinolones**
 - Not FDA approved but likely effective:
 - Anthrax
 - Plague
 - Tularemia
 - Brucellosis
 - Offers advantage as once a day therapy
 - In emergency can treat twice the number of patients for same volume of drug

- **Efforts also directed at blocking anthrax toxin virulence**
 - Toxin made of three proteins, 1st attaches to cell & injects the 2 other proteins
 - Have identified cell receptor for toxin & structure of lethal factor
Ciprofloxacin
USA Today October 23, 2001

- Bayer has patent on oral Cipro until December of 2003
 - $1.6B in worldwide sales in 2000
- Barr laboratories has a 1997 agreement with Bayer not to produce generic Cipro for which Bayer pays $27M per year
 - Other companies have challenged patent
- New QD products in development
 - Ranbaxy (CiproQD, CiproUTI, or CiproOD)
 - DepoMed
- Government could set aside Bayer’s patent in wartime
Anthrax Vaccine
Pink Sheet September 24, 2001

- Formerly called Michigan Department of Public Health Protective Antigen (MDPH-PA)
 - Three 0.5 ml subcutaneous injections Q2weeks
 - Followed by three 0.5 ml boosters Q6months
 - Then annual booster

- BioPort (Lansing, MI)
 - Only U.S. manufacturer
 - Given Department of Defense contract to produce anthrax vaccine
 - 30 good manufacturing process deficiencies
 - Must submit plans to FDA for manufacturing plant renovation by mid October 2001
 - FDA expected to take 4-6 months to approve
Plague (Yersina pestis)

- Acute febrile lymphadenitis or bubonic plague
 - Result of infected flea bites, rodents serve as flea reservoir
 - Generally 2-8 day incubation period following flea bite
 - Bacteria move via cutaneous lymphatics to regional lymph node
 - Y. pestis phagocytized by PMN’s where bacteria multiply
 - Sudden onset of fever, headache, chills, & weakness
 - Within 24 hours classic genital, axilla, or neck bubo (Do not IND bubo—very infectious)
 - Can have pustules, vesicles, eschar, or papular lesions
 - Purpura can progress to necrosis and distal gangrene
 » Called the Black Death
Plague (*Yersina pestis*)

- Estimates to have killed ~25% of Europe’s population
- Septicemia, pneumatic, or meningeal forms
 - Cultures of blood, sputum, bubo, CSF likely to be positive

Pneumonic form *(Most likely form for terrorists)*
- Patients present with fever, lymphadenopathy, chest pain, hemoptysis
- Pneumonic form can be spread person to person
- CXR consistent with bronchopneumonia, confluent consolidation, & cavities may be present
- Untreated mortality >50%
Tularemia (*Francisella tularensis*)

- Named for work done by Dr Edward Francis & in Tulare County (CA)
 - Rabbit or Deerfly fever / Marketmen or Ohara’s Disease
 - Primarily occurs between 30 & 71 degrees latitude
 - Most common between June-August & again in December *(bug & hunting season)*
 - 6 classic forms (ulceroglandular, glandular, oculoglanular, pharyngeal, typhoidal, & pneumonic)
 - Symptoms: fever, chills, headache, malaise, anorexia, & fatigue. Cough, myalgia, emesis, pharyngitis, & diarrhea
Tularemia (*Francisella tularensis*)

Continued

- Fever (>101 F) typically for few days, then abates, then fever & symptoms return
- Spread by bite of blood feeding insect, contact with contaminated animal products, aerosolized droplets, contaminated water, or animal bites
- No human to human transmission
- 3-5 days after bug bite get local papule which over next few days ulcerates, organism spreads via lymphatics, affected tissue will show focal necrosis and may caseate
Smallpox

- Prior to 1972, active immunization programs in the U.S. & worldwide
 - Even those previously immunized likely not protected now
- Incubation ~1-2 weeks
- Disease begins with chills, fever, headache, backache, and vomiting
- May begin with a rash which progresses on to enanthems a few days later
- Transmission person to person
- Mortality ~ 30%
Smallpox Meschede Hospital 1970

- Patient admitted with smallpox (6 day hospital stay)
- Placed in respiratory isolation, hospital was under isolation precautions for flu
- Responsible for 17 cases over following two weeks and 2 additional cases later
 - One case, patient just stayed a few minutes
- Cases occurred throughout hospital & despite patients & healthcare workers all likely being vaccinated
Smallpox Vaccine

- Currently we have 15.4 million doses of old cowpox vaccine in reserve
 - Likely not that entire supply still viable
- CDC has contract with Acambis PLC to manufacture smallpox vaccine
- Originally 20 year contract ($343M) to produce 40 million dose stockpile
- Plan to deliver new vaccine mid-2004
 - End of 2002 will have additional 54 million doses
 - U.S. contracted for additional 155 million doses

WSJ September 18, 2001
Smallpox

- Experiments underway to test cowpox vaccine using 1/5\(^{th}\) and 1/10\(^{th}\) dilutions
 - 650 patient forming 3 groups
 - Full strength, 1/5\(^{th}\), & 1/10\(^{th}\) dilutions
- Diluted could expand current 15.4 million doses into 77-154 million doses
- 4 day window to vaccinate after exposure
- Post exposure therapy
 - Cidofovir (Vistide-Gilead Sciences)
Preparation for Biological Attack
MMWR April 21, 2000

- Enhance epidemiological capacity to detect and respond to biologic attacks
- Supply diagnostic reagents to state and local public health agencies
- Establish communication programs to ensure delivery of accurate information
- Enhance bioterrorism related education and training for health care professionals
Preparation for Biological Attack
MMWR April 21, 2000

- Prepare educational materials that will inform and reassure the public during and after biologic attack
- Stockpile appropriate vaccines and drugs
- Establish molecular surveillance for microbiologic strains, including unusual or drug resistant strains
- Support the development of diagnostic tests
- Encourage research on antiviral drugs and vaccines
Officials Fear U.S. is Ill-Equipped to Deal with Biological or Chemical Terrorism

WSJ September 18, 2001
Lancet September 29, 2001

- Study of 200 hospitals, only 20% had any response plan for biochemical weapons
 - < 50% have decontamination unit with showers
 - < 33% had enough antidote for nerve gas attack
- Estimated ~3% domestic emergency responders trained in dealing with methods of mass destruction
- Last year test of preparedness in exercise simulating plague attack on Denver demonstrated our limited ability to respond
- War game exercise Dark Winter, smallpox virus released in 3 states, undetected for 9 days.
 - By end of 13 day exercise, thousands infected
 - Spread to 25 states and 15 countries
Department of Defense Armed Forces Epidemiology Board Recommendations for Prophylaxis

- **Anthrax** (*B. anthracis*)
 - Ciprofloxacin (Post Exposure & Treatment)
 - Doxycycline
- **Tularemia** (*Francisella tularensis*)
 - Ciprofloxacin
 - Doxycycline
 - Gentamicin (Treatment)
- **Plague** (*Yersina pestis*)
 - Ciprofloxacin
 - Doxycycline
 - Gentamicin (Treatment)
Department of Defense Armed Forces Epidemiology Board Recommendations for Prophylaxis

- **Q Fever** (*Coxiella burnetti*)
 - Doxycycline (Post Exposure & Treatment)

- **Glanders** (*Burkholderia mallei*)
 - Doxycycline

- **Brucellosis** (*Brucella spp.*)
 - Doxycycline
First Responder Equipment

- Tychem 10,000 Encapsulated Level A Vapor Proof Suit
 – $780
- Air Boss PSS-100 Selfcontained Respirator
 – $3,770
- APD 2000 Hand held Chemical Agent Detector
 – $7655
- Mark I Nerve Agent Antidote Kit
 – $540/case of 30
- Millennium Chemical Biological Gas Mask
 – $297

WSJ October 15, 2001
Antibiotic Therapy

- **Two Scenarios**
 - Treatment for active infection
 - Prophylaxis following documented attack

- **Difficult to predict appropriate therapy**
 - Likely delay in identifying attack
 - Further delay in identification of agent & antibiotic susceptibility
 - Possible genetic modification could alter antibiotic susceptibility
 - Clinicians have no experience in diagnosing or treating these pathogens

- Appropriate duration is at best a guess

- No chemotherapy for viral infections
National Pharmaceutical Stockpile

- **Immediate Supply of Antibiotics**
 - 12 hour push packages
 - Under Federal government control
 - Centers for Disease Control and Prevention
 - Initial shipment 50 tons of material for anthrax, smallpox, tularemia, and plague for 2 million

- **Reserve Supply of Antibiotics**
 - Vendor Managed Inventory Packages (VMI)
 - Under Federal government control
 - Centers for Disease Control and Prevention
 - Shipped within 24-36 hours

- Antibiotic supply will be increase to service ~12 million patients with new funding
Patient’s Plea for Antibiotics

- Daily sales of Ciprofloxacin prescriptions
 - Average sales of $1- $5M per day prior to September 11th
 - Sales have increased to $40-$45M/day
 - University of Pennsylvania Physicians memo
 October 2001 from Dr Neil Fishman
 - Rx limited to 10 day supply & Dx must be included on Rx
 - Pressure brought to bear on family physicians
 - Personal stockpiling
 - Expensive ~$1000 drug expense for family of four x 60 days
 - Fluoroquinolones not indicated in pediatrics
 - Produces local shortages
 - Potentially prevents identification of an attack
 - Self medication of patient &/or family members
 - Initial symptoms of anthrax and viral infection indistinguishable
 - Pharmacies could be at security risk in panic scenario

WSJ October 15, 2001
Antibiotic Prophylaxis ADR’s
MMWR 50(November 30):1053, 2001

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>N</th>
<th>N/V/D</th>
<th>LH/DZ</th>
<th>HB</th>
<th>R/HV</th>
<th>F/U</th>
<th>Hosp</th>
<th>D/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipro</td>
<td>3,428</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJ*</td>
<td>365</td>
<td>26%</td>
<td>13%</td>
<td>13%</td>
<td>12%</td>
<td>1%</td>
<td>0%</td>
<td>7%</td>
</tr>
<tr>
<td>NY</td>
<td>1,612</td>
<td>14%</td>
<td>10%</td>
<td>6%</td>
<td>5%</td>
<td>2%</td>
<td>0%</td>
<td>4%</td>
</tr>
<tr>
<td>DC</td>
<td>1,451</td>
<td>24%</td>
<td>19%</td>
<td>8%</td>
<td>6%</td>
<td>3%</td>
<td>N/A</td>
<td>2%</td>
</tr>
<tr>
<td>Doxy</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJ*</td>
<td>55</td>
<td>18%</td>
<td>7%</td>
<td>20%</td>
<td>11%</td>
<td>4%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>NYC</td>
<td>96</td>
<td>11%</td>
<td>1%</td>
<td>4%</td>
<td>2%</td>
<td>2%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>DC</td>
<td>81</td>
<td>12%</td>
<td>15%</td>
<td>5%</td>
<td>5%</td>
<td>9%</td>
<td>N/A</td>
<td>6%</td>
</tr>
</tbody>
</table>

*Self administer survey in NYC & DC, NJ done by RN 7-10 days into Tx
8,424 Postal workers studied October 26 – November 6, 2001

LH/DZ- Lightheaded/Dizziness
R/HV-Rash/Hives
HB-Heartburn
F/U- Required follow-up
D/C- Drug stopped due to ADR
Minnesota Situation

- Fairly low profile target
- No real mass transit system
- Excellent State Department of Health
 - Laboratory capable of working with category A-C agents
 - 1 of 27 National Guard units trained in biohazard
- Level of preparedness likely much higher than national norm
 - Previous preparation drills
 - Twin City level 1 hospitals have been preparing
- State has a MMRS plan of action
 - Communication is an issue
 - Stockpile of pharmaceuticals
Minneapolis Metropolitan Medical Response System

Department of Defense Program

- Response Plan
 - Locally treat 1000 patients for 24 hours
 - Locally provide prophylaxis to 25,000 patients for 24 hrs
- Provide for necessary equipment
- Provide for necessary pharmaceuticals
 - Develop drug formulary
 - Purchase and store pharmaceuticals
 - Allocate appropriate personnel
- Identify plan for temporary morgue
- Plan for necessary law enforcement
- Conduct mock drills

Integrates Local, State, & Federal planning
Minnesota Drug Formulary for Antibiotics

- **Ciprofloxacin**
 - 500mg tablets
 - 400 mg minibags

- **Doxycyline**
 - 100mg / 20ml vials
 - 100 mg capsules

- **Gentamicin**
 - 100mg premixed bags
Push Package Inventory

- **Ciprofloxacin**
 - 432,000 tablets
 - 4,008 bottles of suspension
 - 26,952 IV bags

- **Doxycycline**
 - 5,004,000 tablets
 - 16,032 bottles of suspension
 - 6,300 IV vials

- **Erythromycin**
 - 81,000 vials

- **Gentamicin**
 - 18,000 multi-dose vials
Bioterrorism Summary

“...it’s not a matter of if, but when, which agent, & how bad will it be.” M. Osterholm

- Incredibly complicated situation, likely to worsen over time
 - Everyone has been drafted for this war
 - Glass half empty vs half full syndrome

- Virtually, everyone in the world is affected

- Solutions to bioterrorism will likely begin to unfold, vaccination programs will grow

- At the present time, we are probably not adequately prepared but we are closing that gap quickly
Bioterrorism Summary

- Virtually no U.S. trained physician has seen a clinical case of smallpox, anthrax, plague, etc.
- In initial stages symptoms of biological agents infection are fairly nonspecific
 - Difficult to identify & determine timing of attack
- Clustering of cases may be the clue
 - Syndromic surveillance of ED’s
 - Work attendance & demand for OTC medications
- Would still need to identify pathogen and if a bacteria, antibiotic susceptibilities
- Response plans are dramatically improving
 - 7000 emergency personnel ready to go
 - Would still expect significant public panic
- Morbidity and mortality would be significant for persons initially exposed
Resources

- Centers for Disease Control & Prevention
 - www.bt.cdc.gov
- ASM Website
 - www.asm.org
- Center for the study of Bioterrorism
 - http://bioterrorism.slu.edu
- Treatment handbook that can be downloaded to Palm Pilot
 - www.usamriid.army.mil/education/bluebook.html
- Center for Infect Dis Research & Policy
 - www1.umn.edu/cidrap/index.html